
A New Complex Basis for Implicit Polynomial Curves and its Simple
Exploitation for Pose Estimation and Invariant Recognition

Jean-Philippe Tarel
���

David B. Cooper
�

�
INRIA

�
LEMS, Division of Engineering

Domaine de Voluceau, Rocquencourt Brown University, Box D
B.P. 105, 78153 Le Chesnay, France Providence, RI, 02912-9104, USA

jpt@lems.brown.edu cooper@lems.brown.edu

Abstract

New representations are developed for 2D IP (implicit
polynomial) curves of arbitrary degree. These represen-
tations permit shape recognition and pose estimation with
essentially single, rather than iterative, computation, and
extract and use all the information in the polynomial coef-
ficients. This is accomplished by decomposing polynomial
coefficient space into a union of orthogonal subspaces for
which rotations within two dimensional subspaces or iden-
tity transformations within one dimensional subspaces re-
sult from rotations in ����� measured-data space. These ro-
tations in the two dimensional coefficient subspaces are re-
lated in simple ways to each other and to rotation in the ���	�
data space. By recasting this approach in terms of complex
polynomials, i.e, 
��������� and complex coefficients, fur-
ther simplificationoccurs for rotations and some simplifica-
tion occurs for translation.

1. Introduction

Object recognition based on invariants and object pose
estimation are classic central problems in computer vision.
In this paper, we deal with object recognition and pose es-
timation for Euclidean transformations of 2D Implicit poly-
nomial (IP) curves. The relationship of this paper to the
existing state of the art is as follows. There is a sizeable
literature on alignment and geometric invariants based on
moments, B-splines, superquadrics, conics, combinations
of straight lines and conics, bitangents, and differential in-
variants. For lack of space, we simply reference [2] which
contains a sampling of some of this literature. For IP, 2D
curves and 3D surfaces, the most basic approach to com-
parison of two shapes is iterative estimation of the transfor-
mation of one from the other followed by recognition based

on comparison of their IP coefficients or based on compar-
ing the data set for one with the IP representation for the
other [3, 7].

A major jump was the introduction of intrinsic coordi-
nate systems for pose estimation and Euclidean and affine
algebraic invariants for IP 2D curves and 3D surfaces [7, 2].
These are highly effective but do not use all the information
in the IP coefficients. Recently, a geometric interpretation
of a 2D IP was provided for quartics which led to pose esti-
mation and invariant recognition under affine and Euclidean
transformations [6].

The present paper focuses not on the geometry of the IP
but rather on the geometry of the transformation of the IP
coefficients and is built on the fact that when the �����	��� data
set is rotated, the resulting IP coefficient vector undergoes
an orthogonal transformation [7]. The significance of our
development is that going to an appropriate linear basis for
IP coefficient space, we can compute a complete set of ro-
tational invariants and compute Euclidean pose estimation
based on all the information in the IP coefficients and on
simple functions of relatively stable linear combinations of
IP coefficients.

2. Implicit Polynomial Model

2.1. Definition

An algebraic curve is defined as the zero set of a polyno-
mial in 2 variables. More formally, a 2D implicit curve is
specified by an IP of degree � given by the following equa-
tion:��� �����	�����������! #"%$&� �('  	$ �  � $ � ' ���)�*#+�,-(. �

'%/ � �0� ' � / �) *�+ ,-21 �
3�3#3 � ' � � �

�
� ' � 4 /!/ �

� 4 / �5� 3�3#3 � ' � � �
�

) *�+ ,-76 �98
(1)



Here
��� � �����&� is a homogeneous binary polynomial (or

form) of degree � in � , and � . Usually, we denote by� � �����	��� the leading form. An algebraic curve of degree
2 is a conic, degree 3 a cubic, degree 4 a quartic, and so on.

Implicit polynomial

� �
is often represented by coeffi-

cient vector � having components � '  	$ � , 8���� �
	%��� ��	�� �
(number of coefficients is

/ � � ���#� � � ���&� ): `��� �����	��� �������
where� � � ' ��� ' / � ' � / '  � 3�3#3 ' � � 3�3#3 ' � ��� �� � ��� � � �  3#3�3 �

�
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Superscript � denotes matrix transpose.

In general, the vector representation is convenient for
IP fitting since our fitting methods are set within a linear
framework, while the tensor representation [5] provides a
useful framework for pose estimation for any dimension.

2.2. Conics and Cubics under rotation

We first consider conics and cubics under rotation in or-
der to exhibit properties we want to exploit.

A cubic is defined by 9 coefficients:��� � �����&�(� ' ��� � ' / � � � ' � / � � '  � �  � '%/�/ �%� � ' �  � � ' � � � � � '  / �  � � '%/  � �  � ' � � � � ��8
(2)

When a cubic is rotated through angle � , the � coefficients� ' �  � , 8�� �%�!�"�$# are transformed as a messy function of� . The rotation matrix % �&��� for the data is:' �)(� (+* � '+,
-/. � 0 .�132 �.4152 � ,
-6. � * ' � � * (3)

which defines the transformed coordinate system. The orig-
inal cubic coefficients are written as a vector � and the
transformed one is � ( . We denote with a prime the rep-
resentation after transformation. By substituting (3) in (2),
and after expansion, we obtain the relation between the two
vectors � ( �879� , where 7 is a function of the rotation an-
gle only. This ��:;� matrix can be decomposed in blocks in
the following way:

7 �=<>? � 8 8 88@7 / 8 88 8 7  88 8 8 7 �BADCE
where the diagonal block 7  transforms the coefficients of
the homogeneous polynomial of degree � , i.e the �6FHG form.
Therefore, the size of the block 7  is �I�2�J�#��: �I� �J��� . We
have 7 / ��% �&��� and

7  � <?LK  0 K�M M � K�MNK  0 M  0O� K�MM  K�M K  AE

7 � �P<>? K
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�
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K
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� ADCE
The elements of these blocks are non-linear functions of K �,
-6. � and M � .4152 � . It is well known that the trace

'  � � ' � 
of the quadratic form is not modified by a rotation, and it is
convenient to introduce the angle �T� to easily solve pose
estimation of conics. Equivalent to the trace property is that
the sum of the first and third lines of 7  is independent of
the angle � , which is easily verified. To take advantage of
this relation, we define a new parameterization, U  � , V  � ,U  / , of the coefficients

'  � , '%/ / , ' �  of the polynomial by
applying the following matrix W  :

<? U  �V  �U  / AE � <? � 8 0L�8 � 8� 8 � AE <? '  �'%/�/' �  AE
These new parameters U  � and V  � are linear functions of
the original polynomial coefficients. With this new repre-
sentation, the matrix 7  is mapped into a matrix where �+�
appears:

W  7  W 4 / � <? K  0 M  0X� K�M 8� K�M K  0 M  88 8 � AE � ' % �Y�+��� 88 � *
The reason for this U , V notation is that U  $ and V  	$ are
the real and imaginary parts of the complex coefficient K  	$introduced in the next section.

For 7 � , it turns out that a similar simplification is possi-
ble with the transformation W �

:

<>? U
� �V � �U � /V � / ADCE � <>? � 8 0Z� 88 � 8 0Z�# 8 � 88 � 8 # ADCE <>?

' � �'  /' / ' � � ADCE
and 7 � is mapped into:W � 7 � W 4 /� � ' % �Y#T��� 88 %��[��� *
In summary, when a cubic is rotated, there exists a natu-
ral basis specified by the square matrices �&W  � , �S���"�$#
where 7 is mapped into diagonal �\:O� and �]:L� block form:

^ ( � <>>>>>?
� 8 8 8 8 88 % �&��� 8 8 8 88 8 % �Y�+��� 8 8 88 8 8 � 8 88 8 8 8@% �Y#T��� 88 8 8 8 8 %��[���

ADCCCCCE ^
The coefficient vector of the cubic in the new basis is

^
,

and
^ ( after rotation % �&��� . It is clear that in this new ba-

sis, the coefficient space is decomposed into one or two di-
mensional subspaces invariant to rotations and the vector



^ � � U ��� � U / � � V / � � U  � � U � � � V � � � U � / � V � / � is decomposed
into 2D vectors � U  	$ � V  	$ � which rotate with angles � , �+� , or#T� with respect to the applied rotation. This leads directly
to a simple and robust way to compute the relative orienta-
tion between cubics. Moreover, it is very easy to compute a
complete set of invariants under rotation for a cubic (in the
sense that all other invariants are determined by these):

� 2 linear invariants: coefficients U  / and U � � ,
� 4 quadratic invariants: radiuses U  / � � V / � , U  � � V  � ,U � � � V � � , and U � / � V � / ,
� and 3 relative angles: the angle between

/� � U � � � V � � �
and � U � / � V � / � , between � U / � � V / � � and � U � / � V � / � , and
between

/ � U  � � V  � � and � U � / � V � / � , for instance.

In order to generalize this approach to IPs of arbitrary
degree, we turn to complex numbers and thus the complex
representation of IPs.

2.3. Complex Representation of Implicit Polynomi-
als

Since we are dealing with rotations and translations of
2D curves, complex representation provides a simplifica-
tion in the analysis and implementation of pose estimation
or invariant object recognition. To simplify notation, we fo-
cus on the form

�  � �����&�2��� �#�%$��! ' $ �  4 $ � $ . The main
idea is to rewrite

�  � ���	��� as a real polynomial of complex
variables 
0���0����� and

�
 ���"0 ��� :�  �����	���(� �  � 
&�(� �
���%$��! 

' $�  � $ ��
 � �
&�  4 $ � 
S0 �
&� $

Using binomial expansions for � 
�� �
!�  4 $ and � 
 0 �
�� $ , we
can rewrite

�  ��
�� with new complex coefficients � $ :�  � 
&�(� �
��� $&�  

� $� 
  4 $ �
 $
Notice that coefficients ��� $ � , 8 � 	 �J� are linear complex
combinations of the � ' $ � , 8 � 	!� � , and that

��  4 $ ��� $
since the polynomial is real. Thus depending on odd or even
degree, the previous expression can be rewritten as:� �� ��
�� � %	� ��� �#�%$�
 � � $ 
 �� 4 $ �
 $ � ���� 
 � �
 �� �� " / � 
�� � %��!� � ��� $&� � � $ 
 �� " / 4 $ �
 $ � (4)

where %	�!� 3 � and ��� � 3 � are the real and imaginary parts of
the expression within parenthesis. Not to have to discuss
odd and even cases, we introduce coefficient K $ and rewrite
the previous equations as:�  ��
��(��%	� � �

��� $&��������
�K $ 
  4 $ �
 $ � (5)

where � � � denotes the greatest integer not exceeding � . We
call the vector

^ �� K  $ � the complex vector representation
of a algebraic curve which is defined by a real polynomial
in 
 and

�
 :��� � 
&���;%	� � �
���! � ��� ��� $&��������

�K  	$ 
  4 $ �
 $ ���;%	�!� � F ^ ��� 8 (6)

where � � �5� ��
 ��
  �	
 �
 ��
 � �	
  �
!�	
"! � 3#3�3 ��
 � � 3�3#3 �	
 � 4 � ��#  � �
 � ��#  � �
is the vector of complex monomials. Thus, we have� � � 
&� � %	�!� � � ^ �5� � � � . We denoted by K  $ the con-
jugate of the 	 FHG�� � coefficient of the �TFHG homogeneous
polynomial

�  in 
 and
�
 .

For example, the complex representation of a conic is�  ��
�� � %	�!� �K ��� � �K / � 
0� �K  � 
  � �K  / 
 �
&� where K ��� andK  / are real numbers. Thus, we rewrite it as

�  � 
&�2� K � � �%	� � �K / � 
��7� %	�!� �K  � 
  �(� K  /%$ 
 $  . Remembering notation
of the previous section, it is easy to show that U ��� � K ��� ,U / � � %	�!� K / � � , V / � �&��� � K / � � , U  � � %	�!� K  � � , V  � ���� � K  � � , and U  / � K  / . The complex representation of a
cubic is

��� � 
��7� K ��� �J%	�!� �K / � 
&� ��%	�!� �K  � 
  ��� K  /'$ 
 $  �%	� � �K � � 

�
���J%��!� �K � / 
�� $ 
 $  , and so on.

The principal benefit of the vector complex representa-
tion is the very simple way in which complex coefficients
transform under a rotation of the polynomial. We see that
if the IP shape is rotated through angle � (see (3)), 
 trans-
forms as 
+( �(�

�*)

 , so that 
 �(� 4

�+)

T( , and by substituting

in (5):�  � 
&�(� %	�!� �
��� $&��� ��,� �

4 ��-  4  $'. ) �K $ 
 (  4 $ �
 ( $ �(� � ( ��
 ( �
Hence, the coefficients of the transformed polynomial are

K ($ �/�
��-  4  $'. ) K $ (7)

Moreover, there is a recursive and thus fast way to compute
the �&W  � matrix permitting to transform a given polynomial
coefficient vector � to the new basis

^
for any degrees.

3. Pose Estimation

As described in the previous section, the relation be-
tween the coefficients

^
of a polynomial and

^ ( of the poly-
nomial rotated is particularly simple when using the com-
plex representation, allowing us to compute the difference
of orientation between two given polynomials

^
and

^ (
(see (7)). It turns out that complex representation is not only
useful for rotation but also has nice properties under trans-
lation allowing us to do pose estimation under Euclidean
transformation in a very fast way and by using all the infor-
mation in the polynomial coefficients.



3.1. Implicit Polynomial Fitting

Since object pose estimation and recognition are realized
in terms of coefficients of shape-representing IP's, the pro-
cess begins by fitting an IP to a data set representing the
2D curve of interest. For this purpose we use 3L fitting [1],
which is a least squares linear fitting of an explicit polyno-
mial to the Distance Transform of the data set. The IP curve
is the zero set of this explicit polynomial. 3L fitting [1, 5]

Figure 1. 3L fits of
� FHG degree polynomials to a

butterfly, a guitar body, a mig 29 and a sky-hawk
airplane. In the bottom are �6FHG degree polynomials
fits.

is of lower computational cost and has better polynomial
estimated-coefficient repeatability than all previously exist-
ing IP fitting methods. Fig. 1 shows measured curve data
and the fit obtained with the 3L fitting. This fitting is nu-
merically stable and repeatable, with respect to Euclidean
transformations of the data set, and robust to noise and a
moderate percentage of missing data as shown in Fig. 2.

� FYG
degree fits allows us to capture the global shape, and higher
degree polynomials provide more accurate fits as shown in
Fig. 1 with � FHG degree polynomials. We are working to

maintain good fitted coefficient stability even for high de-
grees.

3.2. Translation

It is well known that none degenerate conics have a cen-
ter. Given two conics, the two centers are very useful to
estimate the relative pose since each conic can be centered
before computing the relative orientation. The goal of this
section is to compute a center with similar properties for
any degrees in the complex representation.

Figure 2. Left, � fits are superimposed with as-
sociated noisy data sets. The original data set is
perturbed with a Gaussian noise along the normal
with a standard deviation of 8 3 � for a shape size of# (or, shape size is 375 pixels and the noise is with a
12.5 pixels standard deviation). Right, �#8�� of the
curve is chopped at � random starting points.

From (6), if 
 is transformed as 
 ( �/�
�*)

 ��� (i.e rotated

with an angle � and translated by � ), we have:��� � 
&��� � � �*� 4 �*) � 
 ( 0�� � � � � � 4 / �*� 4 �*) � 
 ( 0�� � ��� 3�3#3 � � (� ��
 ( �
After expansions, we obtain

� (� ��
 ( � , the transformed lead-
ing form:� (� ��
 ( �(��%	�!� �

��� $&��� 6 � �
�K � $ � 4 ��-

� 4  $'. ) 
 ( � 4 $ �
 ( $ �
Consequently, complex coefficients � K (� $ � ��� $&��� 6 � � of the
transformed leading form

� (� are unaffected by a pure
translation. Continuing expansions, we obtain the trans-
formed next highest degree form

� (� 4 / � 
 ( � having the co-
efficients � K (� 4 / $ � , 8L��	�� � � 4 / �

:� (� 4 / ��
 ( � � %	�!� � ��� $&��� 6	�!1� � �K � 4 / $ � 4 ��-
� 4 / 4  $". ) 
 ( � 4 / 4 $ �
 ( $0
� � ��� $&��� 6 �'� �K � $ � � 0R	 � � 4 ��- � 4 / 4  $'. ) 
 ( � 4 / 4 $ �
 ( $0 �� � / �%$�� � 6 � � �K � $ 	 � 4 � -

� " / 4  $". ) 
 ( � 4 $ �
 ( $ 4 / �
Therefore, these coefficients are transformed in a linear way
with respect to the translation component � :

K (� 4 / $ � �
��- � 4 / 4  $". ) � K � 4 / $ 00� �]0O	 � K � $ ��
00�Y	%� ��� K � $ " / � �(8)



Notice, that if � is even, a careful derivation yields a
special equation for (8) when 	 � � � 4 / �

: K (� 4 / $ ��
��- � 4 / 4  $". ) � K � 4 / $ 0 ����0 	 � K � $ �� 0 � �Y	7� �#� K � $ " / � � . This

is due to the symetric term in 
 and
�
 in (4) for even degrees.

The first interesting property of (8) is that the term de-
pending on the angle is a multiplicative factor in this set
of equations. This means that, given any polynomial, the
translation � ���

� F � � which minimizes the least squares prob-
lem:�
$

$ K � 4 / $ 00� �]0O	 � K � $ �� ��� � F � � 00�Y	%�"�#� K � $ " / � ��� � F � � $  (9)

does not depend on the rotation applied on the polynomial.
Note, this � ���

� F � � is determined solely by curve having co-
efficients

^
and is a center for this curve. The � ���

� F � � of a
high degree polynomial has the same property as the conic
center. Consequently, it can be used in the same way: each
polynomial

^
and

^ ( are centered by computing � ���
� F � � and

� (��� � F � � before computing the relative orientation using all
the transformed coefficients. This center is not different
than the Euclidean center of a polynomial derived with a
completely different approach in [7].

The second advantage of the complex representation is
that we can derive not only one center but several, a differ-
ent one for each summand in (9), with the same invariance
to rotation. The property used here is that K ( - � 4 / . $ depends
only on K - � 4 / . $ , K � $ , and K � - $ " / . , i.e, the complex repre-
sentation uncorrelates the rotation and the translation. But
the robust way to define a unique Euclidean center for IP is
the point � ���

� F � � . Indeed, this center makes use of the re-
dundancy of information in all the coefficients of

� �
and� � 4 / to obtain robust estimate.

3.3. Rotation

In the previous section, only coefficients of leading form� �
and next highest degree form

� � 4 / are used from all
the coefficients in

^
and

^ ( . Experimentally, it turns out
that it is the coefficients of

� �
and

� � 4 / which are the most
robust to noise and small perturbations. Nevertheless, it is
important to take advantage of all the information available
in the polynomial to obtain the most accurate pose estima-
tion possible. At first, we assume that the two polynomials
are centered by using the Euclidean center defined in the
previous section.

For a cubic, under rotation % �&��� , ^ transforms to
^ ( �� K � � ��� �*) K / � ���  �*) K  � � K  / � �

� �+) K � � � � �*) K � / � � . In this equation,
as seen in section 2.2, complex coefficients K / � and K � / are
rotated by angle � , K  � by angle �+� , and K � � by angle #T� .
These coefficients all have information about the shape ori-
entation, but with different periods. If K / � and K � / give di-
rectly the relative orientation between

^
and

^ ( , K  � gives
it up to � , and K � � up to

���
.

In the general case, from (7),
^ ( as a function of

^
under

a rotation � is given by K ( $ � K  	$ � ��-  4  $'. ) where 8"���"� �
and 8"��	 � �  4 / �

. Given
^

and
^ ( , we simply used least

squares to estimate � :

� 152) �
���  � ��� �#�%$�� � � �!1� �

$ K ( 	$ 0 K  	$ � � -  4  $". ) $  (10)

which leads to maximization of � $ K  	$ $�$ K ( $ $ K � M � �I� 0 �6	 � � �' �	� � K  	$ ��0 ' �	� � K ( 	$ � � . Assuming that the noise and the error
is small, the previous equation is approximated by its sec-
ond order Taylor expansion. Then the solution is derived,
and this maximization is solved as:

�0� ���
  $
� 
  $

' �	� � K ( 	$ �90 ' �	� � K  	$ � ��� ��  $��0��6	 (11)

where weights 
  $ are �5��0��6	 �  $ K  	$ $�$ K ( 	$ $ .As just pointed out in the cubic example, �  	$ is an un-
known integer when ��0��6	���8� , and

�� � ��� 4  $ is the period.
Integer �  	$ is between 8 and � 0��6	 0 � . Since the com-
putational cost is very small, the best estimated angle can
be obtained by computing the estimate for all possible inte-
gers and chose the one which minimizes the 
  	$ weighted

standard deviation of �
��� - ������ . 4 � ��� - � ��� . " �� � ��� 4  $ . (Note, the

accuracy of this least squares solution can be improved by
dividing these differences by their respective standard de-
viations.) An alternative is to search for the roots of the
derivative of (10) with respect to � , which is a polynomial
in �

�+)
.

3.4. Euclidean transformations

At this point, if only shape rotation has occurred, we
have indicated how to make optimal (or very good) use of
all coefficients in order to estimate the rotation. The com-
putation of the translation does not use all the information
available. To achieve an optimal algorithm with respect
both rotation and translation, refinement can be applied, by
assuming that � is small in magnitude.

If 
 is translated as 
 ( �9
 ��� and
$
�
$
is small,

� � � 
 ( 0 � �
should be well approximated by the constant and linear term
in the Taylor series expansion of

� � � 
 ( 0 � � with respect to � ,
and then the linear equation in � for

� � 4 / , (8), applies to all
lower degree forms

�  , � ���"0�� . This property allows us
to compute the refined translation by using all coefficients
of the polynomial. After this step, the orientation can be re-
fined by computing the residual relative angle as previously.
The refinement of the translation and of the orientation it-
erates a few times since the convergence is in practice very
fast.

In summary, for pose estimation:



� First the polynomial is centered by computing the Eu-
clidean center from the coefficients of

� �
and

� � 4 /
with (9) as discussed in section 3.2.

� Then the rotation is computed by using information in
all the coefficients of

� �
using (11) and the discussion

in section 3.3,

� The translation and the orientation are iteratively re-
fined one or two times with (9) extended to all forms
and (11) applied on all the coefficients of

� �
.

The advantage of this algorithm is its robustness and sim-
plicity since most of the computations are linear.

noise 0.1 n. 0.2 occl. ��8 � o. �&8 �
angle 1.7% 59.3% 1.1% 42.7%
trans. 1.4% 9.2% 1.4% 3.3%

Table 1. Standard deviation in percentage of
the average mean of the angle and the norm of
one translation component with various perturba-
tions. Added Gaussian data noise has standard
deviations 8 3 � and 8 3 � (12.5 and 25 pixels respec-
tively). Occlusions are ��8 � and ��8 � of the curve
at random starting points. Statistics are for 200
different random perturbations of each kind on
the original shape data. As in Fig. 3, true rotation
is 1 radian, true translation is 1.

The proposed pose estimation is numerically stable, re-
peatable, and robust to noise and a moderate percentage of
missing data as illustrated in Table 1. The shape is the but-
terfly, having size 3 (or 375 pixels) shown in Fig. 1, and
the degree of the fit is

�
. The pose estimation error due to

occlusion increases nicely in the range from 8 to � � � (19
pixels), as shown in Fig. 3. Similar results are obtained in
the range � 8 ��8 3 � �

�
for the standard deviation of the noise.

A noise standard deviation 8 3 � �
is � � of the size of shape

of the butterfly (or 21 pixels), which represent a relatively
large perturbation (see Fig. 2). For higher values of noise,
we have the well know threshold effect [4] in estimation
problems. It arises in our problem because large additive
noise masks the shape bumps useful for rotation estimation.

4. Recognition Using Invariants

In the previous section, complex representation is used to
solve the problem of pose estimation for IPs of any degree.
But the complex representation is also useful for deriving
rotation invariants. The use of these invariants to compare
two IPs is a very fast way to do shape recognition in 2D
images.
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Figure 3. Left, variation of the standard deviation
of the angle and the � component of the transla-
tion for an increasing percentage of occlusion at
200 random starting points. Right, variation of the
standard deviation on invariants

$ K � / $ , K  / , $ K ! � $ ,$ �

! � 0 �

!
/ $

, and
$ �

! � 0 � � � $ (with 200 realizations)
for an increasing amount of Gaussian noise at each
point. Value are percentage of the average value
of the corresponding pose component or invariant.
Rotation is 1 radian, translation is 1.

When the IP is centered with the computation of the Eu-
clidean center as described previously, we have canceled the
dependence of the polynomial on translation, and the only
remaining unknown transformation is the rotation.

noise 0.1 n. 0.2 occl. ��8 � o. �&8 �$ K � / $ 9.8% 33% 6.7% 31.6%K  / 10.4% 34% 8.1% 18.9%$ K ! � $ 9.6% 24% 2.1% 6.1%

Table 2. Standard deviations as a percentage of
the means of a few invariants in response to vari-
ous data perturbations. Gaussian noise has stan-
dard deviation 8 3 � and 8 3 � . Occlusions are �#8 �
and �&8 � of the curve at random starting points.
Statistics for each case are computed from �&8�8 dif-
ferent random realizations.

Since the number of coefficients of

� �
is

/ � �7� ���	���2� ���
and the number of degrees of freedom of a rotation is 1, the
counting argument indicates that the number of geometric
invariants [6] is

/ � � � �#� � � �L��� 0 � . We directly have � �  � � �
linear invariants which are K  ��� �,� when � is odd. From (7),
we deduce that all other

$ K  	$ $ are invariants under rotations.
This gives us �4� �  � � ���
� �  � quadratic invariants. Invariants$ K  	$ $ are geometric distances, but there are angles which are
also Euclidean invariants for an IP. Indeed, relative angles
between the

�  $ � �
� � - � ��� . 4  $ are preserved under rotations.

This yields a complete set of rotation invariants for an IP
of degree � as for the cubic case in section 2.2. We want
to emphasis the fact that most of the obtained invariants are



linear or quadratic even for high degree polynomials. This
leads to invariants less sensitive to noise than are those de-
rived from other approaches such as symbolic methods.
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Figure 4. Left, scatter of invariants vector� $ K � / $ � K  / � for 50 perturbations (noise with 8 3 �
standard deviation) of each shape in Fig. 1. Right,
scatter of invariants vector � $ K ! � $ � �

! � 0 �

!
/ � .

As shown in Table 2, invariants are less robust than pose
parameters since there are computed independently. But as
shown in Fig. 3, the better robustness of the translation es-
timation in comparison to the angle estimation allows rota-
tion invariants to be computed out of the range of robustness
of the angle estimation. For particular shapes, a few angu-
lar invariants become bimodal up to a particular amount of
noise, such as

$ �

! � 0 � � � $ for the butterfly as shown in Fig. 3.

mig butterfly skyhawk guitar

mig 100% 0% 0% 0%
butterfly 15% 91.5% 0% 7%
skyhawk 55% 0% 45% 0%
guitar 8% 0% 0% 92%

Table 3. Percentage recognition on a set of 200
perturbed shapes for noise of standard deviations8 3 � .

Fig. 4 shows scatter plots vectors of pairs of invariants
for the 4 shapes of Fig. 1. Though the scatter of components
of invariant vectors are not always well separated, the use of
the complete set of invariants appears to yield highly accu-
rate recognition. The recognizer used is Bayesian recogni-
tion based on a multivariate Gaussian distribution for each
object and having a diagonal covariance matrix estimated
from 200 noisy shapes for each object with standard devi-
ations 8 3 � in the normal direction. This model is used to
do recognition on another noisy set with standard deviation8 3 � (25 pixels, i.e, at the limit of the robustness for pose).
Results are quite good (see Table 3). For large noise pertur-
bations, the sky-hawk becomes difficult to recognize from
the other airplane, since details are lost in noise.

5. Conclusions

Though the shape-representing IP's that we use may be
of high degree, we have introduced pose estimation, and
recognition based on geometric invariants, which are re-
alized by linear operations followed by reasonably stable
nonlinear operations on the IP coefficients. The goal is to
take advantage of the intrinsic robustness and accuracy of
linear and near linear estimation. If put into a Bayesian or
Maximum Likelihood framework, we can achieve pose esti-
mation or object recognition which uses all the information
contained in the IP coefficients. In this paper we presented
approximately optimal pose estimation and hybrid recogni-
tion. The approximately optimal pose estimation used all
the information available in the IP coefficients, but not with
the optimal weightings. The hybrid recognition used trans-
lation estimation based on some of the IP coefficients fol-
lowed by rotation invariant recognition based on a complete
set of geometric rotation invariants. The translation esti-
mation is quite accurate, and the object recognition based
on a complete set of rotation invariants produces a single
computation recognizer that appears to be highly accurate
because, though some of the invariants are not effective dis-
criminators, the complete set is! This is the first complete
set of geometric invariants for an IP that we are aware of!
This approach needs to be explored further, and extensions
to 3D are under study.
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