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Abstract. The context of this work is lateral vehicle control using a
camera as a sensor. A natural tool for controlling a vehicle is recursive
filtering. The well-known Kalman filtering theory relies on Gaussian as-
sumptions on both the state and measure random variables. However,
image processing algorithms yield measurements that, most of the time,
are far from Gaussian, as experimentally shown on real data in our ap-
plication. It is therefore necessary to make the approach more robust,
leading to the so-called robust Kalman filtering. In this paper, we review
this approach from a very global point of view, adopting a constrained
least squares approach, which is very similar to the half-quadratic theory,
and justifies the use of iterative reweighted least squares algorithms. A
key issue in robust Kalman filtering is the choice of the prediction error
covariance matrix. Unlike in the Gaussian case, its computation is not
straightforward in the robust case, due to the nonlinearity of the involved
expectation. We review the classical alternatives and propose new ones.
A theoretical study of these approximations is out of the scope of this
paper, however we do provide an experimental comparison on synthetic
data perturbed with Cauchy-distributed noise.

1 Introduction

Automatic driving and assistance systems development for vehicle drivers has
been subject of investigations from many years [1]. Usually, this kind of problem
is decomposed into two different tasks: perception and control. We focus on the
particular problem of the lateral control of a vehicle on its lane, or lane-keeping.

The perception task must provide an accurate and real-time estimation of
the orientation and lateral position of the vehicle within its lane. Since the road
is defined by white lane-markings, a camera is used as a perception tool. The
control task requires computing, in real time, the wheel angle in such a way that
the vehicle stays at the center of the lane.

A key problem is to decide about the choice of the parameters transmitted
between the control and perception modules. This raises the question of design-
ing an approach which integrates both control and perception aspects. A popular
technique in control theory is the well-known Kalman filtering. Kalman theory



is very powerful and convenient, but it is based on the assumption that the state
and the measures are Gaussian random variables. Most of the time, outputs of
vision processes are far from the Gaussian assumption. This has been shown in
several vision problems, for instance [3][4][2]. This leads us to consider robust
Kalman theory when measures are not Gaussian, but corrupted by outliers. Var-
ious algorithms [5][6][7] were proposed to tackle the problem of robust Kalman
filtering. The first algorithm proposed in [6] is difficult to apply in practice. Al-
ternatives described in [5] and [7] outline an approach leading to weighted least
squares algorithms. However, these approaches are restricted to a small number
of convex functions, while the one we propose here is valid for a large class of
not necessarily convex functions. Also, contrary to our approach, the estimation
step of the algorithm in [5][7] is not iterative.

We propose here an overview of the problem based on Lagrange multipliers
for deriving the equations of the robust Kalman filtering leading to a iterative
reweighted least squares algorithm. To our knowledge, in the existing deriva-
tions, the explanation of why the robust Kalman filtering is not exact is rarely
discussed. The main advantage of this derivation, which is equivalent to the half-
quadratic approach [3][4], is to allow us to see two levels of approximations. One
consists in assuming a Gaussian summary of the past and the other concerns the
covariance matrix of the estimated state at every time step. Different possible
approximate covariance matrices are proposed and experimentally compared.

The paper is organized as follows. First, we describe the system inboard
the vehicle, and show that the features we are extracting from every image are
not Gaussian. Second, for the sake of clarity, we gradually review least squares,
recursive least squares, and Kalman filtering theory, and finally derive the ro-
bust Kalman filtering. Finally, we show the advantages of the designed robust
Kalman filtering for the estimation of lane-markings position on perturbed road
images and provide a comparison between the different approximate covariance
matrices.

2 Image Feature Extraction

Fig. 1. Side camera system.

We have developed a system for measuring the lateral position and orienta-
tion of a vehicle using a vertical camera on its side. Due to the camera specifica-
tions and position, the accuracy of this system should be about 2 cm in position.
Fig. 1 shows a first version of the system. A second version, where the camera
is inside the left side mirror, is in progress. The image plane is parallel to the



road surface, and the camera is mechanically aligned with the vehicle axis. This
geometry reduces the calibration of the system to very simple manipulations.
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Fig. 2. Typical image without perturbation (a), and perturbations due to another
markings, shadows, lighting conditions (b) (c) (d). Solid lines are the fitted lane-
markings centers assuming Gaussian noise.

Fig. 2(a) displays a typical example of images observed by the camera. The
seen lane-marking is very close to a straight line, even in curves. Images (b),
(c) and (d) are examples of perturbations due to other markings and lighting
conditions. The image processing consists in first, extracting features in each
newly grabbed image and second, in robustly fitting a line (or another kind of
curve, as described in the next section). The first step is required for real time
processing. The set of extracted features must provide a summary of the image
content relevant to the application. On every line of an image, a lane-marking
is approximatively seen as a white hat function on the intensity profile. Lane-
marking centers, on every image line, are chosen as the extracted features.

Following the approach in [8], we want to reduce as much as possible the
effect of low image contrast on the extracted features. Consequently, we have
to design a detector which is relatively invariant to contrast changes. When
the threshold on the intensity is reduced, features in images are numerous, and
a criterion for selecting these becomes mandatory. We believe that selection
based on geometrical considerations is a better alternative than selection based
on intensity contrast. Since the system is calibrated, the feature extraction is
performed on the width of lane-markings which is assumed to range between 8
and 23 cm.
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The obtained set of points is used by the line fitting. The question arises
about the probability distribution function (pdf) of the extracted points around
the true line. Most of the time, this pdf is assumed to be Gaussian. In Fig. 3(a),
the measured pdf from a sequence of more than 100 real images is displayed.
The pdf is not Gaussian, since Fig. 3(b) does not look like a parabola. Indeed,
deeper investigations have shown that the curve in Fig. 3(b) can be very well

approximated by ¢(b%) = 4/1+ 3—22 — ¢ with 0 = 5, in a range of [—20, 20] pixels
around the minimum. For a good approximation on a larger range, a linear
combination of the same kinds of functions with different values of o seem to be
needed.

3 Robust Estimation Framework

We consider that the lane-marking centers, extracted as described in the previous
section, are noisy measurements of an underlying curve explicitly described as a
function of one of its image coordinates:

d
Y= Z fi(z)a; = X ()" A (1)

where (z,y) are the image coordinates of a point on the curve, A = (a;)o<i<d
is the coefficient vector of the curve parameters, and X (z) = (fi(z))o<i<a is
a vector of basis functions of the image coordinate z. In the context of our
application, the basis functions are chosen as f;(z) = . The underlying curve is
therefore a polynomial of degree d (i.e, a line when d = 1, a parabola when d = 2).
Other bases may be used with their corresponding advantages or disadvantages.

In our model, the vertical coordinate is chosen as the z and assumed non-
random. Thus only the other coordinate of the extracted point, y, is considered
as a noisy measurement, i.e. y = F(z)* A+b. In all that follows, the measurement
noise b is assumed independent and identically distributed (iid), and centered.

For an intuitive understanding, we make a gradual presentation of the robust
Kalman framework. Non-recursive least squares fitting is first recalled. Then,
robust estimators are presented based on Lagrange multipliers approach and
approximate inverse covariance matrices are proposed. In the fourth subsection,
we introduce recursive and robust least squares (recursive least squares is a
simple case of Kalman filter, using a constant state model). Finally, the robust
Kalman filter is described.

3.1 Least Squares Fitting

First, we remember the very simple situation where only one image is observed
and where the noise b is Gaussian. The goal is to estimate the curve parameters
Arg on the whole n extracted points (x;,y;), ¢ = 1, ...,n. This issue is also known
as a regression problem. Let A denote the underlying curve parameters we want
to approximate with Arg. Let o be the standard deviation of the Gaussian noise



b. The probability of a measurement point (z;,y;), given the curve parameters
A, is:
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pi((zi, y:)/A) =

For simpler equations, from now, we denote X; = X (z;). We can write the prob-
ability of the whole set of points as the product of the individual probabilities:
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where p is the so-called likelihood of the point data set, given curve parameter
A. x denotes the equality up to a factor. Maximizing likelihood p with respect
to A is equivalent to minimizing the negative of its logarithm, namely:

i=n

1
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It is the so-called least squares error. Since the fitting error is quadratic and
positive, the minimization of ey g is equivalent to canceling the vector of its first
derivative with respect to A. It gives the well-known normal equations:

XX'A=XY (3)
where Y = (y;)1<i<n is the vector of y coordinates, the matrix X = (X;)1<i<n
is the design matriz, and S = X X* is the scatter matriz which is always sym-
metric and positive. If S is definite, (3) has the unique solution Ars = S~!XY.
Computing the best fit Apg simply requires solving the linear system (3). As
seen before, it is also the Maximum Likelihood Estimate (MLE).

Since only Y is random, the expectation of Arg is Ars = S™'XY. The
point coordinates in Y correspond to points exactly on the underlying curve,
thus A = S~1XY. Therefore, Arg equals A, i.e. the estimator Ayg of A is
unbiased. The covariance matrix Crs of Ars is (Ars — Ars)(ArLs — Ars)t =
STIX(Y -Y)(Y - Y)tXtS_t We have (Y —Y)(Y —Y)t = 02I,, since the
noise b is iid with variance o2. I; denotes the identity matrix of size n x n.
Finally, the inverse covariance matrix of Apg is deduced:

CLS - S QLS (4)

Qrs is also known as Fisher’s information matrix for the set of n data points.
Q@15 is defined as the expectation of the second derivative of ey g with respect
to A.
Finally, since erg is minimum in Apg with second derivative matrix Qrg,
(2) can be rewritten as:
poce”2(A-Ars) Qrs(A-Ars) (5)
As clearly shown on Fig. 2, least squares fitting does not provide correctly
fit curves in the presence of image perturbations.



3.2 Robust Fitting

We still assume that only one image is observed, and that measurement noises
are iid and centered. But now, the noise is not assumed Gaussian, but having
heavier tails. The heaviest observed noise is specified by a function ¢(t) in such
a way that the probability of measurement point (:ci, ¥i), given curve parameter

A, is: -vi
, pi((zi, y:)[A) x e —HCEHY
Similarly to the half-quadratic approach [3][4], #(¢) is assumed:

— HO: defined and continuous on [0,+oo[ as its first and second derivatives,
— H1: ¢'(t) > 0 (thus ¢ is increasing),
— H2: ¢"(t) < 0 (thus ¢ is concave).

These three assumptions are very different from the ones used in M-estimator
approach for the convergence proof. Indeed in [9], the convergence proof requires
that p(b) = #(b?) is convex. In our case, the concavity and monotony of ¢(t)
implies that ¢'(t) is bounded, but ¢(b?) is not necessarily convex with respect to
b. Note that, the pdf of Sec. 2, observed in practice on real data, verifies these
three assumptions.

Following [9], the role of this ¢ function is to saturate the error in case of an
important measurement noise |b;| = | XfA—y;|, and thus to lower the importance
of outliers. The scale parameter, o, sets the distance from which a measurement
noise has a good chance to be considered as outliers. Notice that with certain ¢,
the associated pdf cannot be integrated on its support. Without difficulties, a
bounded support with fixed bounds can be introduced to maintain the statistical
interpretation of the fitting.

Following the same MLE approach than for least squares, the problem is set
as the minimization with respect to A of the robust error:

qu (KA uy

Notice that the Gaussian case corresponds to the particular case in which
¢(t) = t, but this last function does not strictly agree with assumption (H2).
ers(A) is indeed a limit case of egr(A). Contrary to the Gaussian case, the previ-
ous minimization is in general not quadratic. This last minimization can be done
iteratively using the Gradient or Steepest Descent algorithms. But, since ¢(b?)
and thus eg(A) are not necessarily convex, these algorithms can be relatively
slow when the gradient slope is near zero. Indeed, the speed of convergence is
only linear, when quasi-Newton algorithms achieve a quadratic speed of conver-
gence. But generally, with quasi-Newton algorithms, the convergence to a local
minimum is not sure. Therefore, we prove next that the used quasi-Newton al-
gorithm always converges towards a local minimum. A global minimum can be
obtained using simulated annealing, despite an expensive computational cost [3].

We now explain how this eg can be solved iteratively, using the well known
quasi-Newton algorithm named iterative reweighted least squares. The same



algorithm is also a particular case obtained with the half-quadratic approach [4].
First, we rewrite eg(A) as the search for a saddle point of the associated Lagrange
function. Then, the algorithm is obtained as a alternated minimization of the
dual function.

First, we rewrite the minimization of eg(A) as the maximization of —eg.
This will allow us to later write —eg(A) as the extremum of a convex function
rather than a concave one, since the negative of a concave function is convex.
Second, we introduce the auxiliary variables w; = (@)2 These variables are
needed to rewrite —eg(A) as the value achieved at the minimum of a constrained
problem. This apparent complication is in fact precious since it allows us to
introduce the Lagrange multipliers. Indeed using (H1), —er(A) can be seen as
the minimization with respect to W = (w;)1<i<n of:

= 5> —6(w)
i=1

subject to n constraints h;(A, W) = w; — (@)2 <.
For any A, we now focus on the minimization of E(A, W) with respect to
W only subject to the n constraints h;(A, W) < 0, with respect to W only.
This problem is well-posed because it is a minimization of a convex function
subject to convex constraints. Therefore using the classical Kuhn and Tucker’s
theorem [10], if a solution exists, the minimization of E(A, W) with respect to
W is equivalent to the search of the unique saddle point of the Lagrange function
of the problem: i
1 = th A— Yi\2
Lr(A, W, \;) 2; —o(w) + Aiw: — (FF——=)?)

where \; are Kuhn and Tucker multipliers (A\; > 0). More formally, we have
proved for any A:
—er(A) = min max Lr(A, W, N\) (6)

Notice that the Lagrange function Lg is now quadratic with respect to A,
contrary to the original error er. Using the saddle point property, we can change
the order of the variables w; and A; in (6). Lr(A, W, A;) being convex with respect
to W, it is equivalent to search for a minimum of Lgr(A4, W, \;) with respect to
W and to have its first derivative zero. Thus, we deduce:

Ai = ¢’ (w;) (7)

This last equation can be used with (H2) to substitute w; in Lg and then to
deduce that the original problem is equivalent to the following minimization:

. A — . _L A I_l . .
minep(4) = min —Lr(4, ¢ (%), A)
E(A,N) = —Lgr(A,¢'""(\;), A) is the dual function. The dual function is con—

vex with respect to A. £ is also convex with respect to \; (Indeed, a)\g =



_¢”(¢’+1(A))) Since er(b?) is not convex, it is not necessary that £ is convex
with respect to A and )\;. Therefore, £(A, \;) does not have a unique minimum.
An alternate minimization of the dual function leads to the classical robust

algorithm, used in the half-quadratic and M-estimator approaches:
1. Initialize Ag, and set j = 1,
2. For all indexes i (1 < ¢ < n), compute the auxiliary variable w; ; = (

3. Solve the linear system ZZZ? gi)’(ww)XzXfAJ = Z’:z? gi)'(w,,J)Xzy,,
4. If ||A; — Aj_1]| > €, increment j, and go to 2, else Agrrs = A;.

XiAj_1—yi )2
o b

The convergence test can be also performed on the error variation. A test
on a maximum number of iterations can be added too. It can be shown that
the previous algorithm always strictly decreases the dual function if the current
point is not a stationary point (i.e a point where the first derivatives are all zero)
of the dual function [11]. Using the previous Lagrange function, this proves that
the previous algorithm is globally convergent, i.e, it converges towards a local
minimum of er(A) for all initial Agps which are not a maximum of eg(A4). As a
quasi-Newton algorithm, it can be also proved that the speed of convergence of
the algorithm around a local minimum is quadratic, when S is definite.

(a) (b) (d)
Fig. 4. Fitting on a real image assuming (a) Gauss, (b) quasi-Laplace, (¢) Cauchy, and
(d) Geman & McClure distributed noise. Thin black lines are the initial Ag’s. Thick
ones are the fitting results. See Sec. 4 for a definition of the pdfs.

Finally, Fig. 4 illustrates the importance of robust fitting in images with
many outliers. The thin black lines depict the initial Ag’s. The thicker ones are
the fitting results Ag, assuming (a) Gauss, (b) quasi-Laplace, (c) Cauchy, and
(d) Geman & McClure distributed noise. A correct fitting is achieved only with
the last two pdfs which are not convex.

3.3 Covariance matrix in Robust Fitting

The covariance matrix Cr of the estimate Ag is required for a correct manage-
ment of uncertainties in a recursive process. Contrary to the least squares case,
where the covariance matrix was easy to compute using its definition, the esti-
mation of Cg as the expectation of (Ar —AR)(Ar—Ag)! is difficult in the robust
framework, due to the non-linearities. An alternative is to use an approximation.

Similar to [9], p. 173-175, an approximation based on extending (4) is pro-
posed. The inverse covariance matrix is approximated by the second derivative
of e at the achieved minimum:



i=n

Rruber = D (2wig” (wi) + ¢ (w;)) X; X} (8)
i=1
2 10 b\2
where w; is computed once the minimum of eg is achieved. The value % =

2we” (w) + ¢’ (w) is not always positive, since ¢((£)?) is not necessarely convex
with respect to b. Nevertheless, the second derivative of eg with respect to A
at AR is a positive matrix since Ar achieves a minimum. This property is a
necessary condition for the matrix being interpreted as a covariance matrix.

In [5][7], another approximation is implicitly used in the context of approx-
imate robust Kalman filtering. The proposed approximate inverse covariance
matrix can be seen as the second derivative of —Ly with respect to A, at the
achieved saddle point:

CIE,IC'L'pra = Z ’\1X'LX'Lt (9)

where \; is computed when the minimum of egr is achieved. However, p. 175
of [9], Huber warns us against the use of this matrix (9).

Another approximation can be obtained if we forget that \; is a random
variable. Let us rewrite the last equation of the robust algorithm as:

XRX'A=XRY (10)

where R is a m X n matrix with diagonal values A;, 1 < 7 < n. Using these

notations, the covariance matrix Cg new1 is (Ar — Ar)(Ar — Ag)! and equals
(XRX")"'XR(Y — Y)(Y — Y)!R'X*(XRX")~*. Recalling from Sec. 3.1, that
(Y-Y)Y-Y) = oZId we deduce:

(XRXt) (XR XY~ (XRX?Y) (11)

R newl —

We also propose, without Justlﬁcatlon, another approximation:

1 i=n
R new2 _2 Z )‘lQXZXf (12)

Now, the question is ”what is the best choice for an approximate inverse
covariance matrix?” A theoretical study is out of the scope of this paper, but we
provide an experimental comparison in Sec. 4.

3.4 Recursive Fitting

‘We now consider the problem of sequentially processing images. The steady-state
situation consists in supposing that we observe, at every time step ¢, the same
underlying curve. Suppose that images are indexed by ¢ and that for each image
t, we have to fit its n; data points (z;4, yi,t), ¢ = 1,...,n¢. Of course, assuming
that every point in every image is iid and centered, it is clear that we could
directly apply what is explained in the two previous sections, on the whole data
set. However, it is better to take advantage of the sequential arrival of images
and deploy a recursive algorithm, in particular for saving memory space and
number of computations, especially in the context of real time processing.



Recursive Least Square Fitting: When least squares error is used, recursive
algorithms are based on an exhaustive summary of the data points, observed
before t. Indeed, the error of the data points from time 1 to ¢ is:

k=t i=n

erLSt :$ZZ :L"Lk A yzk)

k=11i=1

This sum can be rewritten as the sum of the error at time ¢ alone and of the
error from time 1 to ¢t — 1:

i=ng

1 1
erps(4) = 5 (A~ Arrsi1)'Qrrsi—1(A— Arpsi—1) + 292 D (XL A= yig)?

=1
(13)
Using (5), the summary of the past error consists in the previously fitted solution
Arrs,t—1 and its Fisher’s matrix Q,rs,t—1. By comparing e,rs; with erg, the
exhaustive summary by A,rs,:—1 and Qrrs,:—1 can be interpreted as a Gaussian
prior on A at time t.
The error e, s, is quadratic and using (5) its second order matrix is Qs
Taking second derivative of (13), we deduce:

1
Qrrst = Qrrst—1 + ;St (14)

where S; = Zzz” X+ X} ;. The recursive update of the fit is obtained by solving
the following linear system obtained by canceling the first derivative of e,r; with
respect to A:

1
QrrstArrs: = Qrrsi—14rLs—1 + ;Tt (15)

with T} = E:_? ¥i,tX4,t. As a consequence, the recursive fitting algorithm con-
sists of the following steps:

1. Initialize the recursive fitting by setting Q,rs,0 and A,1s,0 to zero, and set
t=1.
2. For the data set associated to step ¢, compute the matrix Sy = > .71 X; ; X},
and the vector T} = Ez T yi,+Xi ¢ only related to the current data set.
. Update the Fisher’s matrix Q,rs,; using (14).
. Compute the current fit A,1s, by solving the linear system (15).
5. If a new dataset is available, increment ¢ and go to 2.

= W

The solution, obtained by this recursive algorithm at step ¢, is the same that
the one obtained by standard least squares using all points of time steps from 1
to t. It is the so-called recursive (or sequential) least squares algorithm (subscript
rLS). Note that no matrix inverse is explicitly needed. Only one linear system
is solved at every time step £. This can be crucial in real time applications, since
the complexity for solving the linear system is O(d?), when it is O(d®) for a
matrix inverse.



Note that (14) gives the recursive update of the Fisher’s matrix Q, s, as
a function of the previous Fisher’s matrix Q,rs: 1 and of the current scatter
matrix S;. A better initialization of Q15,0 than 0 consists in 5 times the identity
matrix, where 8 has a positive value close to zero. This initialization insures
that the solution of (15) is unique. Indeed, @,Ls, is definite for any ¢, even if
S in (14) is not. This is equivalent to the Ridge Regression regularization [12].
More generally, Qr1.s,0 is the inverse covariance matrix on the Gaussian prior on
the curve parameters A, leading to a Maximum A Posteriori (MAP) estimate.

Recursive Robust Fitting: Is it possible to generalize this recursive scheme
in the robust case? In general, an exact answer is negative : it is not possible to
rewrite (13) excepted for a very narrow class of function ¢, that do not satisfy
our assumptions (see sufficient statistics in [13]). Moreover, to obtain a solution
without approximation, the computation of the weights A; would require storing
all past observed points in memory up to the current time step. For real time
application, this is a problem, since it means that the number of computations
will increase with time ¢. Clearly, a second level of approximation is needed -
remember that the first one consists in the approximate computation of the
inverse covariance matrix as described in Sec. 3.3. It is usual to consider A, ;—1
as Gaussian with a covariance matrix Crp—1 = Q;Blz,t—p while it is a seldom
pointed out that it is an approximation. The summary by A,g:—1 and Qrr—1
is not exhaustive, but can still be included as a prior during the robust fitting
at every time step:

piy X1, tA y’L t

erRt Z ¢

Thus, e,g,; can be minimize by following the same approach than in Sec. 3.2.
If Huber’s (8) approximate is used, the new approximate inverse covariance
matrix at time step t is:

1
———— ) + E(A —Arrt-1)"Qrri—1(A — Arrt—1)

i=ng

QrR,t,Huber = Z (2w; 19" (wiye) + ¢'(wi,t))Xi,tXf,t + QrR,t—1,Huber (16)

=1

where w; ; = w; j; with j the last iteration when the minimum of e, g is reached.
Similarly, other approximations can be derived using Cipra’s (9) and our approx-
imations (11) and (12).

Finally, the recursive and robust algorithm consists of the following steps:

1. Initialize Qg0 and A, g0 to zero or to a prior, and set t=I,
2. Initialize Aot = Ayr—1, and set j =1,
3. For all indexes i (1 < ¢ < n;), compute the auxiliary variable w; ;; =

X +A
( Ja1t yzt)z,



4. Solve the linear system

1=n¢ i=ng
(Z ¢ (wijt) Xit X{ 4 + Qrry—1)Aj = Z ¢'(wi) Xiyi + Qrrt—14rRt—1
=1 =1

5. If |4+ — Aj_1,¢]| > €, increment j, and go to 3, else continue,
6. A.r: = Aj, and its approximate inverse covariance matrix Qg is given
by (16) or similar. If a new dataset is available, increment ¢, and go to 2

In the recursive context, it is clear that, a better estimate of the covariance
matrix leads to better recursive estimators. In particular, if the covariance matrix
is under-estimated with respect to the true covariance matrix, information about
the past will be gradually lost. On the contrary, if the covariance matrix is over-
estimated, the impact of the most recent data is always diminished.

3.5 Robust Kalman

Kalman filtering is a stochastic, recursive estimator, which estimates the state
of a system based on the knowledge of the system input, the measurement of
the system output, and a model of the link between input and output.

We can identify state A; at time ¢ with A,rg: or A, g, depending of the
measurement noise pdf. As in Sec. 3.1, we introduce Y; = (v;,t)1<i<n,, Which
is the so-called measurement vector, and X; = (X;)1<i<n, the measurement
matrix. The link between measurements and state can thus be written as Y; =
X;A;+ B where B is a vector of iid, centered measurement noises. This equation
is the so-called measurement equation.

Compared to the recursive least squares, discrete Kalman filtering consists
in assuming linear dynamics for the state model. More precisely, we assume
A, =U;Ai_1 + Vi + u where u is a centered iid Gaussian model noise. This last
equation is the so-called model, or state-transition, equation. As a summary, the

Kalman model is:
A, =UAi 1+ Vitu
th = XtAt + v

When v is Gaussian, (17) models the classical Kalman (subscript K). When v
is non Gaussian, (17) models the robust to non-Gaussian measurement Kalman,
or robust Kalman for short (subscript RK ). The steady-state case we dealt with
in the previous section, is a particular case of (17), where the first equation is
deterministic and reduced to A;y1 = A:.

In the dynamic case with v Gaussian, the prior on A is not A; 1 but the
prediction A kKt = UiAk -1+ Vi, given by the model equation. Using the model

(17)

equation, the covariance matrix of the prediction Ag; is derived as Ck,; =
U,C K,t_lUf + X, where X is the covariance matrix of the Gaussian model noise

u. Thus the inverse covariance matrix of the prediction Qx,; = Cfflt using the
matrix lemma, is:

Q=2 ' = WU U, + Qi 1) UL S (18)



This last equation is interesting in the context of real time applications, since
it involves only one matrix inverse at every time ¢. As in (13), the prediction is
used as a Gaussian prior on A. The associated error, to be compared with (13),
is now:

k2

ntl

1 - o .
ex,t(4) = S(XE A=)+ 5(14 — Ag1)'Qr (A — Ak,)

N | =

g

i=1

The recursive equations of the Kalman filtering are obtained by derivations
from ek ;. When Q K,t is computed, only one linear system has to be solved at
every t.

How does this method extend to the robust case? As before with recursive
least squares, generally, an exact solution of the robust Kalman is not achievable.
The two levels of approximations must be performed. Like in Sec. 3.4, we assume
that Ark,—1 is approximatively Gaussian, and its inverse covariance matrix is
given by one of the approximations of Sec. 3.3. As a consequence, the associated
€rror 1s:

1 iy Xf,tA —Yit

enica(A) =5 3 4l %) + 5(A— Arkc) Qrca(A — Aricy)

[

In the robust Kalman, the Huber’s approximation (16), translates as:

'i=nt

QRK,t,Huber = Z (2wi 8" (wie) + ¢ (wie)) Xi e XL, + Qrice (19)

i=1

Other approximate inverse covariance matrix can be derived using Cipra’s (9)
and our approximations (11) and (12).
Finally, the robust Kalman algorithm consists of the following steps:

1. Initialize Qrk,0 and Ark o to zero or to a prior, and set t=1,
2. Compute the predicted solution A ri,t = UtArk -1+ V4, and its covariance
matrix Qrk,: using (18),

w

. Initialize Ag; = Ark , and set j = 1,

4. For all indexes ¢ (1 < ¢ < n;), compute the auxiliary variable w;;; =
(Xf!tAj;l,t—yi,t )2,

5. solve the linear system

(Z ¢ (Wi 1) Xin Xty + Qrice) Ajr = Z ¢ (wi) Xiyi + Qrit ARk,
i=1 i=1

6. If |A;+ — Aj_1,]| > €, increment j, and go to 4, else continue,
7. Apk, = Aj; and its approximate inverse covariance matrix Qrx ; is given
by (19) or similar. If a new dataset is available, increment ¢, and go to 2.



Note that in [5][7], one single weighted least squares iteration is performed
at each time step. We believe for each iteration one should achieve convergence
in the approximation done in steps 4-6. Moreover the weights in [7] are binary.
This corresponds to a truncated Gaussian pdf, violating (H0). In such a case,
the choice of the scale parameter becomes critical: a small variation of the scale
parameter can produce a very different solution.

As a conclusion, the Lagrange multipliers approach (and half-quadratic ap-
proach) of robust fitting allows us to have new insight in why robust Kalman
filtering provides approximate estimates. Robust Kalman is not exact because:
the amount of past data cannot be reduced without loss of information, and the
covariance matrix of the predicted state is an approximation. Contrary to [5][7],
this formulation also suggests that it is important to iteratively search for the
best solution A; at every time steps.

4 Experiments

Name pdf oc e~ 2407 error=¢(b>) |weight=¢'(t)
1 Gauss xe 2 b’ 1
0.5 quasi-Laplace o« 6_%\/1+T 2(v/1+ 82 - 1) 11+t
0 Cauchy o 11:1’12 In(1 +b%) %—H
—1|Geman & McClure [3]| o e21+62 1_’:_% ﬁ

Table 1. Correspondence between particular values of a and classical ¢s and pdfs
proposed in the literature.

We have restrict ourselves in the choice of ¢ to the following one parameter
family of functions:

Balt) = ~(1+6) = 1)

These functions verify the three assumptions (H0), (H1), and (H2), when o < 1.

This family is very convenient, since it allows us to catch many of the classical
¢s and pdfs proposed in the literature. Tab. 1 illustrates this fact. Notice that
the pdf obtained in the experiments of Sec. 2 corresponds to @ = 0.5. The
pdf obtained for o = 0.5, also known as the hypersurface function, is a good
differentiable approximation of Laplace’s pdf. Thus we have preferred to name
it the quasi-Laplace function.

Name [v/Coo| v/C11 [v/Coo rel. Std.[+/Ci; rel. Std.
Chew1 |0.138]0.00474 7.8% 10.6%
Ccipra |0.162]0.00555 9.8% 13.2%
Cruper [0.189]0.00647 10.5% 14.1%
Chew2 |0.190(0.00653 13.1% 17.6%

[reference[0.195]0.00688] \ |

Table 2. Comparison between the covariance matrices obtained with various approx-
imations. The relative standard deviations are also shown.



A simulation was performed using 50000 fits on simulated 101 noisy points
along a line with true parameters ap = 100 and a; = 1. ag is the pose of the
line and a; is its slope. The noise pdf for each sample is Cauchy o 7 T ( fEvEaH with

o = 1. The Cauchy noise was simulated by applying the function tan(% v) on v, a
uniform noise on [—1, 1]. The variance of the Cauchy pdf is not deﬁned, thus the
simulated noise can have very large values (outliers). Robust fits were obtained
using the Cauchy-distributed pdf of Sec. 3.2. For every fit, the Huber’s, Cipra’s,
and ours approximate covariance matrices were computed and averaged. These
are denoted Cryper, Ccipras Cnewi and Cpey2, respectively. The square roots of
the averaged diagonal matrix components are shown in Tab. 2. The covariance
matrix of the 50000 fits is also estimated and is the reference displayed in the
last line of Tab. 2 (Monte-Carlo estimates).

R

(2)
Fig. 5. Typical image without perturbatlon (a), and perturbatlons due to another
markings, shadows, lighting conditions (b) (c) (d). Solid lines are the fitted lane-
markings centers assuming Geman & McClure noise.

Tab. 2 shows that the closest approximation is Cjey2. All these approxima-
tions can be ordered in terms of proximity, with respect to the reference one,
in the following order: Chrew2, CrHuber; Ccipra and Chrew:. Notice that the closer
to the reference one the matrix is, the larger its relative variation from one fit
to another is. For instance, this variation is 7.8% for Cpew1 when it is 13.1%
for Chews. Clearly, the choice of the approximation is a trade-off between ac-
curacy and stability. We also notice that all the approximations under-estimate
the true matrix. A different weighting of the two right terms in (16) and (19)
can be introduced for correcting this.

Finally, we show in Fig. 5, the same images than in Fig. 2 using Geman &
McClure noise assumption. Unlike the Gaussian assumption, the obtained fits are
correct even in presence of important perturbations due to other lane-markings
and difficult lighting conditions.

5 Conclusion

In this paper, we have reviewed the problem of making Kalman filtering robust
to outliers, in a unified framework. The link with Lagrange multipliers yields a
revised half-quadratic theory and justifies the use of iterative reweighted least
squares algorithms in M-estimator theory even for non-convex p(b) = ¢(b?).
Moreover, in contrast to previous works, we do not restrict ourselves to a sin-
gle potential function but the half-quadratic framework is valid for a large class



of functions, involving non-convex and hence more robust ones. We have shown
that, as soon as non-Gaussian likelihoods are involved, two levels of approxima-
tion are needed. First, in contrast with the non-robust case, there is no obvious
closed-form expressions for the covariance matrix. After reviewing classical so-
lutions, we proposed new approximations and experimentally studied their be-
havior in terms of accuracy and stability. An accurate covariance matrix is very
important to tackle the problem of missing data on a long sequence of images,
an important subject for future investigations. Second, to design a recursive
filter in the robust case, the pdf of previous estimates must be considered as
Gaussian. In existing algorithms, only one iteration is performed at each time
step to obtain the robust estimate. We believe it is better to let the iterative
least squares algorithm to converge. Further exploration than presented in [5] is
needed to treat the case where the noise involved in the state-transition equa-
tion is non-Gaussian. Here the challenge is to derive an integrated and consistent
framework.
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