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Abstract

This paper presents a global scheme for 3D face recon-
struction and face segmentation into a limited number of
analytical patches from stereo images. From a depth map,
we generate a 3D model of the face which is iteratively de-
formed under stereo and shape-from-shading constraints as
well as differential features. This model enables us to im-
prove the quality of the depth map, from which we perform
the segmentation and the approximation of the surface.

1 Introduction

While a lot of work has already been carried out on face
images [3], 3D face modeling is still very little used for
recognition purposes. In this paper, we propose a global
scheme which yields a description of the face surface in
terms of given analytical shapes such as quadrics, or cubics.
It seems to be a reasonable assumption to consider that a
human face can be modeled with a good approximation by
a few patches covering some significant regions that human
perception would use for face recognition. The contribution
of this paper is to present successive modules which pro-
duce a global segmentation of the face from stereo views,
through the computation of a depth map, its optimization
using a 3D mesh of the surface, and the extraction of differ-
ential features which guide us for the segmentation and the
approximation process. Section 2 briefly explains how we
obtain the depth map from a calibrated stereo pair. Section
3 shows how we can improve the quality of the depth map,
via a 3D surface model which evolves under stereo, shape-
from-shading and differential constraints. Section 4 uses the
depth map to derive differential features which could guide
a future segmentation of the surface. Section 5 develops

the segmentation of the surface into a set of given patches,
typically quadrics or cubics.

Fig. 1 briefly presents the whole process which derives
a global face segmentation from a pair of images.
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Figure 1. From a pair of images to face seg-
mentation

2 From stereo pairs to depth maps

Our scheme starts with the acquisition of a calibrated
stereo pair which gives the two perspective projection ma-
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Figure 2. A stereo pair of a manufactured face

From a calibrated stereo pair of a face (fig. 2), we com-
pute the disparity map (fig. 3) with a correlation algo-
rithm [5] 1 that produces dense disparity maps with very
few false matches which can be easily interpolated.

Figure 3. The depth map provided by a corre-
lation algorithm

3 3D reconstruction with deformable models

From an organized cloud of 3D points, we can gener-
ate a triangulated mesh which covers the face. Typically,
we sample our depth map so that the average distance be-
tween 2 vertices is approximately 5 pixels. For example,
we are dealing with 250x350 images, and our triangulation

1implemented in Robotvis project, at INRIA Sophia Antipolis

is composed of 3500 points. The mesh will then be consid-
ered as a deformable model which can evolve under internal
and external forces. Our mesh is regular and hexagonal,
i.e. each vertex, except at the boundaries, has exactly six
neighbors. The work of this section has been partly done in
collaboration with P. Fua from SRI International, USA.

3.1 Snake-like optimization

We recover a model’s shape by minimizing an ob-
jective function ������� that embodies the image-based in-
formation. The variables of the objective function are
the 3 coordinates of each vertex of the mesh, so � �
� � 1 � � 2 �"!#!$!#� �&%'� � 1 � � 2 �(!#!#!$� � %)�
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The objective function can be expressed as the weighted
sum of a stereo term and a shape-from-shading term [6]. The
stereo term is most useful when dealing with highly-textured
areas, whereas the shape-from-shading term is most useful
in areas with constant or slowly varying albedo, which is a
reasonable assumption when working on face images.

In all cases, �����*� typically is a highly non-convex func-
tion, and therefore difficult to optimize. However, it can
effectively be minimized [7] by+ introducing a quadratic regularization term �-, �

1 . 2 �0/21435� where 143 is a sparse stiffness matrix,+ defining the total energy �76 �98 ,:�;,<�����>=?�������+ embedding the curve in a viscous medium and itera-
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where A is the viscosity of the medium.

Because �;, is quadratic, the dynamics equation can be
rewritten as
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In practice, A is computed automatically at the start of the
optimization procedure so that a prespecified average vertex
motion amplitude is achieved. The optimization proceeds
as long as the total energy decreases. When it increases, the
algorithm backtracks and increases A , thereby decreasing
the step size.

In effect, this optimization method performs implicit Eu-
ler steps with respect to the regularization term [7] and is
therefore more effective at propagating smoothness con-
straints across the surface than an explicit method such as
conjugate gradient.



In our case,

8 , has been set to a rather high value, so
that the regularization term plays an important role in the
optimization process. Our reconstructed surface needs to be
rather smooth in order to extract crest lines and perform a
global segmentation, as it will be explained in the following
sections.

3.2 Crest line extraction on a triangulated mesh

We would like our mesh to be constrained by geometrical
features such as orbits, or the nose ridge which are significant
features in a human face, and can be useful for recognition
purposes or can guide a future segmentation of the face. Our
goal is thus to find a mathematical description of those fea-
tures, extract them automatically on the mesh and constrain
the mesh to coincide with those features. Since they usually
correspond to high curvature areas, a natural idea would be
to calculate the local curvatures of the surface at each vertex
of the mesh and select the points where the maximum curva-
ture is either high or locally maximum. However, because
those features may cross the facets between vertices, simply
extracting the vertices that are maxima of curvature would
not yield the appropriate results.

To overcome this problem, we describe the features
in terms of crest points, previously defined as the zero-
crossings of the derivative of the maximum curvature in the
maximum curvature direction [9, 10].

We can attach to each point of the surface two principal
curvatures and two principal curvature directions. If T 1

and UE 1 denote respectively the maximum curvature and the
maximum curvature direction, a crest point is thus defined
by the equation : V UW T 1 � UE 1 X �

0

where

V
!$�"! X denotes the inner product.

A crest line is the locus of these zero-crossings.
The notion of crest point uses a third order derivative of
the surface Y<� � � 
 � , and is therefore very sensitive to noise.
We thus need to smooth the surface before starting any
computation.

3.3 Curvature estimation

We compute the curvatures at each vertex of the mesh
by fitting a quadric to the neighborhood of this vertex with
a least-square method using the points of the neighborhood
and the normals to the surface at these points [8].
The size of the neighborhood used for quadric-fitting is an
important parameter of the crest line extraction program. In-
creasing the neighborhood is equivalent to further smooth-
ing the surface.
We compute the first and the second fundamental forms at-
tached to that quadric.

In the quadric-fitting approximation, the altitude Z of vertex[ �]\ � ^_� Z7� is expressed as a function ZS�]\ � ^ � of the \ and ^
coordinates such thatZS�]\ � ^ �
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The tangent plane to the surface at point
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normal to the tangent plane is defined as Uh � U
 1 i U
 2.
We then derive the two fundamental forms Φ1 and Φ2 and the
Weingarten endomorphism j �

H Φ J 1
1 Φ2. The eigenval-

ues and the eigenvectors of j are respectively the principal
curvatures T 1 and T 2 and the principal curvature directionsUE 1 and UE 2 of the surface at vertex

[
.

In order to ensure the consistency of the orientation of the
principal frame � Uh � UE 1 � UE 2 � , we enforce:

C f E � Uh � UE 1 � UE 2 � X 0

Among the six neighbors of vertex
[

, we choose the vertex[
1 which maximizes

V H H�k[l[
1 � UE 1 X . Then, we estimate

the derivative of the maximum curvature in the maximum
curvature direction by finite differences, and set:

C T 1 � [ � � T 1 � [ 1 � H T 1 � [ �
3.4 Zero-crossing extraction

The extraction of the zero-crossings of C T 1 is performed
using a tracking algorithm inspired by the Marching Lines
algorithm [13]. Here, we deal with regular hexagonal tri-
angulations. On each facet m of the mesh, we apply the
following algorithm :+ for each vertex

[
of facet m , determine the sign of

the derivative C T 1 � [ � .+ if, for two neighbors
[

1 and
[

2, C T 1 � [ 1 � ! C T 1 � [ 2 � V
0,

there is a crest point on the edge � [ 1
[

2 � . Interpolate
linearly C T 1 along the edge � [ 1

[
2 � and find the loca-

tion of the zero-crossing of C T 1.+ another zero-crossing must appear on one of the two
other edges of the facet. Locate it on the appropriate
edge.+ draw a segment across the facet.

By applying this scheme to all the facets of the mesh, we
can draw lines on the triangulation. They are guaranteed to
be continuous, and either form a loop on the surface or cross
the whole surface from one boundary to the other.

Fig. 4 shows the tracking of the crest points over three
facets. The + and - signs on the vertices indicate the signs
of C T 1. The algorithm links all the zero-crossings of C T 1
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Figure 4. The zero-crossing extraction algo-
rithm

that can be found on adjacent edges. The crest line is thus
composed of maxima and minima of the maximum curva-
ture. A simple thresholding on the value of the interpolated
maximum curvature of each zero-crossing, compared to the
maximum value of this curvature on the whole surface, en-
ables us to get rid of most of the spurious points.

3.5 Guiding the 3D reconstruction with differen-
tial features

The next step is to use the information we have extracted
on the mesh to derive a more accurate description of the
surface in the areas where the differential information is
meaningful, i.e the regions with high curvature values (nose,
orbits,...).

We first propose the following algorithm :+ extract some crest lines on a mesh.+ for each detected zero-crossing, find the closest vertex
to this zero-crossing.+ move this vertex towards this zero-crossing so that
the edges of the mesh coincide with the crest lines.+ optimize the new mesh using the algorithm of Section
3.1.+ restart the process with the new mesh.

Incorporating the differential information in the recon-
struction process ensures that the model fits the data (through
the stereo term) and is consistent with the geometrical fea-
tures extracted.

Fig. 5 shows a shaded view of the 3D mesh obtained
from the depth map of Fig. 3, and the optimized mesh with
some superimposed crest lines.

4 Extraction of differential features from
depth maps

Another way of extracting differential features on the
face surface is to deal with the depth map itself. This work

Figure 5. A shaded view of a mesh generated
from the depth map, and the main crest lines
superimposed on a Gouraud rendering of the
final mesh

is fully described in [11], and has been implemented by
V. Prinet at INRIA-Rocquencourt. Since the intensity of
each point �n\ �c^ � of the depth map is the depth ZS�]\ � ^ � of
that point, we can easily compute the partial derivatives
of the surface �]\ �c^5� ZS�]\ � ^ � � with filtering techniques, and
then derive the principal curvatures. This approach yields
rather satisfactory results and we use it here to extract the
parabolic lines, which are the loci of the zero-crossings of
the Gaussian curvature Tpo � T 1 T 2. These lines separate
the areas which can be locally approximated by an ellipsoid
( T o X 0) from those which can be locally approximated by
an hyperboloid ( T o V

0). This partition can be a first step
towards a global approximation of the whole face surface by
a set of quadrics as it will be explained in the next section.

We also run the crest line extraction on the depth map.
Fig. 6 shows the optimized depth map after running the
process described in the previous section. Fig. 7 shows
the partition of this map induced by both parabolic line and
crest line extraction.

Figure 6. The final depth map obtained from
the optimized mesh



Figure 7. A partition of the face depth map
according to parabolic lines and crest lines,
before and after connexification

5 From depth maps to face segmentation

The segmentation in patches of a depth image provides a
small description of the reconstructed data, as demonstrated
by [4]. Moreover, in the particular case of a human face, the
segmentation allows to select some parts of the face such as
the nose, cheeks and the forehead.

The segmentation algorithm used is an extension to geo-
metric clusters of the Fuzzy c-Means clustering method [1].
Let Q5� � � 
 � be the depth image, and qNm�r7� � � 
 �cstr	u 1 vxwxwyv z a set
of cluster prototypes. A cluster prototype is a function de-
fined on the whole image, such as a plane, a quadric, or a
cubic. Each prototype only fits a part of the depth image,
defined as the pixel cluster. Cluster indexed by T collects all
the pixels where the pixel depth is at the nearest euclidean
distance of prototype m�r-� � � 
 � . Then, a cluster is not a con-
nex patch. Nevertheless, cluster prototype fitting and image
partition are performed simultaneously.

Thus, our algorithm directly minimizes the depth dis-
tance between the depth data and functions m r � � � 
 � which
divide the image in d parts. To do this in a robust way,
the membership

� r7� � � 
 � of the pixel � � � 
 � to the clusterT is not 0 or 1, but it is a fuzzy membership between 0
and 1. Consequently, the algorithm minimizes the objective
function below on the image Q_� � � 
 � :

fp�Pm r � � r � � z{ r	u 1

{|#} v ~"� � � r � � � 
 � ������m r � � � 
 � H Q_� � � 
 �2� 2

(3)
with � zr	u 1

� r-� � � 
 �
�

1 and
� r-� � � 
 ��� 0.

Therefore, the segmentation algorithm is [12]:+?���"�7��� : Fix the number d of functions m r � � � 
 � , the
fuzzy exponent � and the function degree (plane,
quadric, cubic). Initialize the functions m�r with the
coarse segmentation obtained in the previous section.

+?���"�-��� : Generate a new partition of the image using
the following equation of the fuzzy memberships:� r7� � � 
 �

�
1� z� u 1 �p� ��� |#} v ~�� J5� |#} v ~"� �� �t� |#} v ~"� J5� |#} v ~"� � � 2� O 1

(4)

+?���"�-����� : Compute the new best m�r which mini-
mizes the weighted mean-square error between points� � � 
 � m r � � � 
 �2� and � � � 
 � Q5� � � 
 �2� :{|#} v ~"��� � ��� o(� �

� r � � � 
 � � � �Pm r � � � 
 � H Q5� � � 
 �2� 2

+?���"�-��� � � : If the distance partition is not stable, go to
step � . Otherwise each pixel is labeled with the indexT of the nearest cluster prototype, and we connexify
each region.

Fig. 8 and 9 successively show the segmentation into
7 quadric patches, and another segmentation into 7 cubic
patches initialized with the previous segmentation. We can
see that one region covers the forehead and eyebrow ridges,
one covers the cheeks, another one approximates the nose
and two other ones cover the two orbits.

Figure 8. The segmentation of this region by
a set of quadrics with the initialization given
by Fig. 7

The main problem in this process is to find a trade-off
between the quality of the approximation, ensured by a large
number of patches, and the significance of segmentation,
only ensured by a limited number of patches.

In future work, we intend to incorporate in the segmenta-
tion process itself some constraints related to the differential
features, following the work already been carried out in [2]:
for instance, it should be hard for two regions to be merged
if they are separated by a parabolic line.

It would also be crucial to study how stable this segmen-
tation is from a person to another ; for example, we wonder
if the kind of quadric which approximates a given region of
the face is rather invariant between different people.



Figure 9. The segmentation of this region by
a set of 7 cubics with the initialization given
by Fig. 8

6 Conclusion

In this paper, we have presented a global scheme which
can produce a segmentation of the human face into 3D
patches from a pair of stereo images. This method uses
various techniques such as correlation algorithm for 3D re-
construction, deformable model theory, feature extraction
based on differential geometry and surface segmentation
with geometric fuzzy clustering. All the techniques briefly
described here are difficult problems in themselves and need
further improvement. We think that such a scheme can be
used for recognition purposes, or face modeling. For in-
stance, a semantic description of the surface using a limited
number of shapes and parameters could be of interest to
match a given face to an element of a face database. On
the other hand, we could think of synthesizing a full 3D
model of the head using such an analytical description of
the surface head, from a whole sequence of stereo images.
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