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Abstract— A bi-static Ground Penetrating Radar (GPR) 
has been developed for the detection of cracks and buried 
pipes in urban grounds. It is made of two shielded Ultra Wide 
Band (UWB) bowtie-slot antennas operating in the frequency 
band [0.3;4] GHz. GPR signals contain not only responses of 
targets, but also unwanted effects from antenna coupling in 
air and in the soil, system ringing, and soil reflections that can 
mask the proper detection of useful information. Thus, it 
appears necessary to propose and assess several clutter 
reduction techniques as pre-processing techniques to improve 
the signal-to-noise ratio, discriminate overlapping responses 
issued from the targets and the clutter, and ease the use of 
data processing algorithms for target detection, identification 
or reconstruction. In this work, we have evaluated on Bscan 
profiles three different statistical data analysis such as mean 
subtraction, Principal Component Analysis (PCA), and 
Independent Component Analysis (ICA) considering a 
shallow and a medium depth target. The receiver operating 
characteristics (ROC) graph has allowed to evaluate the 
performance of each data processing in simulations and 
measurements to further draw a comparison in order to select 
the technique most adapted to a given soil structure with its 
radar probing system. 

Index Terms— Clutter reduction, signal processing, object 
detection, polarimetry, ultra-wide band radar. 

I. INTRODUCTION 

In the field of civil engineering, ground penetrating 
radar (GPR) is a well-known non destructive tool to probe 
natural or man-made materials or structures (road, bridges, 
or soils)([1]-[2] and the references herein). GPR is generally 
used to survey pavement thickness at traffic speed, detect 
and localize buried objects (pipes, cables, voids, cavities), 
zones of cracks and discontinuities in concrete or soils. 
Among both GPR configurations [2], the ground-coupled 
and the air-launched radar configurations, we have decided 
to work with a pair of transmitting and receiving bowtie-slot 
antennas in close proximity to the soil surface in order to 
minimize the significant reflection component issued from 
the air-soil interface which masks the signature of a shallow 
dielectric target (object or dielectric discontinuity), and also 
to improve the penetration of electromagnetic energy into 
the soil [3]. The GPR system operates in the frequency 
domain using a step-frequency continuous wave (SFCW) 

using a Vector Network Analyzer (VNA ANRITSU MS 
2026B) in an ultra-wide band [0.3; 4] GHz to benefit from a 
wide dynamic range and a low figure noise. Its linear 
moving along the soil surface allows detecting the reflected 
waves induced by all discontinuities in the subsurface. In 
such a configuration, the direct and the ground-coupling in 
the antenna system which cannot easily be separated can 
overlap and obscure the target response, thus producing part 
of the clutter component. The clutter varies with soil 
dielectric characteristics and/or surface roughness and leads 
to uncertainty in the measurements [1]-[4]-[5]. 
The moving of the GPR system along a sampled linear path 
provides a 2D profile (Bscan), and thus an image that can 
be analyzed in both the frequency and the time domain. 
The detection of targets is usually focused on time imaging. 
Thus, the targets (limited in size) are usually shown by 
diffraction hyperbolas on a Bscan image that is an 
unfocused depiction of the scatterers. The contrast in 
permittivity and the ratio between the size of the target and 
the wavelength contribute to enhance the radar cross 
section (rcs) of the target, which means the magnitude of 
the target signature. However, Bscan images contain also 
the clutter signal composed of two overlapping signals, i.e., 
the direct coupling between the antennas and the reflected 
wave from the soil surface, the scattering on the 
heterogeneities due to the granular nature of the subsurface 
material, and finally some additive noise. In general, the 
clutter has a statistical nature because the ground surface is 
not perfectly flat and smooth, and shows heterogeneities. It 
appears as a group of overlapping signals that are 
uncorrelated to the target scattering characteristics but can 
occupy the same time and frequency domains as the target. 
Thus, clutter reduction appears as a first step, a pre-
processing technique, in data processing algorithms aiming 
at target detection, identification or reconstruction. Clutter 
reduction techniques are classified in statistical signal 
processing, conventional filtering, wavelet packet 
decomposition, and non linear signal processing based on 
neural networks [4-7]. In this paper, the conventional mean 
subtraction technique (or background removal) and two 
statistical signal processing techniques, namely the 
Principal Component Analysis (PCA) and Independent 



Component Analysis (ICA) techniques, have been 
considered and compared to reduce the clutter and to 
enhance the target signal. The conventional mean 
subtraction technique assumes a steady clutter signal, thus 
allowing the suppression of a horizontal coherent signal 
calculated over several traces. As a counterpart, the latter 
method is sensitive to any space variations of the clutter 
signal, i.e., the spatial variations of either the soil 
permittivity or the surface roughness. PCA and ICA are 
multivariable and statistical techniques aiming at data 
dimensionality reduction; as the goal in PCA is to find an 
orthogonal linear transformation that maximizes the 
variance of the variables, the goal of ICA is to express a set 
of random variables as linear combinations of statistically 
independent component variables.  

In this paper, we propose to evaluate quantitatively, by 
means of the receiver operating characteristics (ROC) graph 
[9], the performance of PCA and ICA in Bscan profiles 
considering a shallow and a medium depth target. The study 
has been focused on a few scenarii for the soil structure for 
which the target is embedded at different depth within soil. 
Within this scope, the clutter signals can disturb the 
detection of the first arrival signals from the target. The 
level of the disturbance depends on the dielectric 
characteristics (conductive or dielectric, shape) of the target 
to be detected. 

II. HARDWARE SETUP FOR SIMULATIONS AND 

MEASUREMENTS 

The ultra-wide band (UWB) ground-coupled radar used 
and designed in our laboratory is composed of two bowtie-
slot antennas with dimensions close to an A4 paper sheet, as 
shown in Fig. 1a. The antennas, designed on a single-sided 
FR4 substrate ( mmh 5.1= ; 01.0tan;4.4' == δε r ), 

operate in the frequency band [0.3; 4] GHz, and have a 
maximum gain of 5.5 dB [3]. To reduce the backward 
radiation in air and interactions with the surrounding 
environment, the antennas have been shielded with a 
metallic box filled with a 68 mm thick-layered absorbing 
material. According to previous studies [3], the antenna 
offset has been defined to 60 mm. To acquire Bscan profiles 
along a linear path on the soil surface with a 40 mm 
sampling step, two antenna configurations or polarizations 
(see Fig. 1b) have been considered: the parallel (end-fire or 
TE polarization), and the mirror configuration (broadside or 
TM polarization). FDTD simulations of all the antenna 
geometries and the soil have been made using the 
commercial software EMPIRE XCcel with an adaptative 
meshing resolution of lambda/15 in the different media. The 
excitation signal is the first derivative of the Gaussian 
function with the duration 0.5 ns and a time zero 0.3 ns; its 
spectrum has a maximum frequency at 1 GHz and a 
bandwidth of 3 GHz. A layered flat soil has been 
considered. The antennas are supposed to be positioned 
towards the soil surface at an elevation

 
close to 10 mm. 

Measurements have been  made using  portable VNA in the 
step  frequency  (SF-GPR)  acquisition  mode  in  the  band  

 
Fig. 1. The CPW-fed triangle bowtie slot antenna: (a) top view and (b) 

the radiated electric field in both planes TE and TM 
 

 [0.05; 4] GHz; 1601 frequency samples and an intermediate 
Frequency (IF) bandwidth of 500 Hz have been considered. 
A full two ports calibration has been made with two 2 m 
length radiofrequency cables. To obtain time data at finer 
resolution, zero padding has been performed with the 
bandwidth extended to 9 GHz. To compare synthetic and 
measured Bscans, the spectrum of the excitation signal used 
in the simulations has been multiplied to the frequency data 
and an inverse Fourier transform has been computed. 
Both types of polarizations have been considered, as they 
influence the detection of either a conductive or a dielectric 
pipe in a given soil.  

III. THE PROPOSED STATISTICAL CLUTTER REDUCTION 

TECHNIQUES 

A. Data modeling 

The GPR system with its transmitting and receiving 
antennas is moved linearly along the ground surface to 
detect the reflected waves from the soil subsurface. This 
displacement produces a set of time or frequency signals 
named traces (Ascans) at each spatial step; �  is the 
number of spatial samples and M the number of time or 
frequency samples. Thus, the collected data can be 
expressed in a data matrix )( �MX × , where M� < ; 

considering a data sample ijX , i  denotes the frequency 

(time) index and j   denotes the GPR position index. PCA 

and ICA are techniques of array processing and data 
analysis that will consider matrix X .  

B. Principal Component Analysis (PCA) 

PCA is a second-order statistical method, as only 
covariances between the observed variables are used in the 
estimation process. The variables are supposed Gaussianly 
distributed, linear and stationary. The purpose of PCA is to 
derive a relatively small number of decorrelated linear 
combination called principal components (PCs) of a set of 
random zero-mean variables ( MK < ) while retaining as 
much of the information from the original variables 
(frequency or time samples) as possible. The PCA 
algorithm can be performed using two approaches: the 
eigenvalue decomposition of the covariance matrix of the 
data and the singular value decomposition (SVD) of the 
data matrix. In this work, SVD has been performed on 

(b)

L
s=

33
2.

2

W1=86.59

Wa=2.11

r2=20
r1=20

Ws=190.4

L
2
=

13
6.

4

Wf=67.02

L2=136.4

(a)

TM

TE

5.5' =sε

1.01.0 −= mSsσ
soil

mmhs 10=

450 MHz

(Incident Gaussian 
current 0.2 A, duration 

0.52 ns)



matrix X  from which the mean of each trace has been 

removed such as: 

 TVUX Σ=  (1) 

Where )( �� ×Σ  ( TΣ=Σ ) is a diagonal matrix whose 

elements named the singular values iσ , indicate the 

amount of information (variance) contained in each 
principal component, )( �MU ×  and )( ��V ×  are 

respectively the left and right singular vectors. 
The amount of variance contained in each eigenvector 

is directly related to the corresponding eigenvalue from

D=Σ2 . Thus, the singular values can be sorted in 
descending order and the singular vectors in VU , reordered 

the same way. The clutter or non-target related signals are 
usually contained in the first few singular vectors. The 
criterion proposed in [4]-[5] has been used in order to 
select the really significant components containing the 
target information in the dataset and reduce its dimension 
such as: 
- Eliminate some percentage below the sum of all singular 
vectors; 
- Plotting singular values against the order number to look 
for breakpoints in the slope of the curve where the singular 
values of noise should slightly change and hence produce a 
flat slope. 

The clutter-free dataset is then synthesized from the [k1, 
k2] indexed principal components as follows:

 ∑
=

=
2

1

k

ki

T

iii vuY σ  (2) 

C. Independent Component Analysis (ICA) 

ICA analysis is a blind source separation (BSS) 
technique to extract statistically independent components 
(ICs called sources) generated simultaneously using the 
observed sequences of data [8]. The sources are supposed 
mixed by an unknown medium and the mixed signals are 
delivered by sensor measurements. The term ‘blind’ 
stresses the fact that the mixing structure and the sources 
are both unknown. As the PCA technique uses a data 
analysis based on second-order statistics adapted to signals 
with a Gaussian distribution (second-order are zero), the 
ICA method considers the majority of signals (natural 
signals)  which do not have a Gaussian distribution and do 
have higher-order moments. The subspace formed by ICA 
is therefore not orthogonal as it is the case with 
components extracted by PCA. In addition, extracted ICs 
are truly statistical independent, thus the aim of ICA is to 
find new variables (ICs) that are both statistically 
independent and non-Gaussian. 

The mathematical model for ICA, based on the same 
structure of data matrix X , expresses a linear 

transformation such as: 
 SAX =   (3) 

Where )( �MS × represents the matrix containing N 

original sources as its columns and )( ��A × is a square 

mixing matrix. Thus, X  represents a mixture of the � 

sources forming S.  
The main computational issue in the ICA process is the 

estimation of the mixing matrix A , so that the ICs, i.e. the 
columns of matrix S  can be obtained as follows: 

 XAS 1−=  (4) 

And the estimate of S is thus defined XWY = . 

The determination of the ICs begins by removing the 
mean values of the measurements (centering process) as in 
PCA. The next step is to whiten data X  that means linearly 

transforming them by a matrix  V  such that SVZ =  is 

white, that is { }T
E Z Z I=  where I  is the identity matrix. 

Matrix V  can be easily found by PCA (eigenvalue 
decomposition) as normalizing the principal components to 
unit whitening data; the data are projected onto its principal 
component directions. As for Gaussian variables, 
uncorrelatedness implies independence, whitening 
eliminates all the dependence information in the data, this is 
not the case for non-Gaussian variables, and there is much 
more information in the data than what is used in whitening. 
The relation between non-gaussianity and independence 
could be explained easily using the central limit theorem 
(CLT) [8]. According to the CLT, the distribution of a sum 
of independent random variables tends to be “more” 
Gaussian than the original random variables. To obtain 
independent original sources we have to find  W  such that 

)(tyi  is “least” Gaussian. The quantitative measure of non-

Gaussianity of the signal (definition of a contrast function), 
which is generally based on kurtosis (a fourth order 
cumulant) and negentropy estimations, allows to obtain the 
mixing matrix. The optimization (minimization or 
maximization) of a contrast function enables the estimation 
of the independent components. Afterwards, the sources can 
be estimated. Our implementation uses the fixed point 
algorithm FastICA [8]. The selection of sources is based on 
the value of their Kurtosis fourth order cumulant [7].  

IV. EVALUATION ON SIMULATED AND EXPERIMENTAL 

DATA  

A. ROC curves as a method of assessment 

The Receiver Operating Characteristic (ROC) 
methodology has been introduced in the early 80’s and has 
become a conventional technique for performance 
assessment. It was firstly used to measure diagnostic 
performances of medical imaging systems. For a single 
target (a defective area in our case), the ROC analysis 
consists in measuring the binary response of the detection 
system (target present or not) to one stimulus, in our case 

an image, by calculating the true positive (TP) rate prt  and 

the false positive (FP) rate prf  [9]. A couple ( prt ; prf ) 

corresponds to one point in the ROC plane for a given 
threshold in the range [0; max(amp)], where max(amp) 



corresponds to the maximum magnitude of the absolute 
values in the Bscan. It is common to use the area under a 
ROC curve (AUC) that expresses the performance for the 
goodness of a ROC curve. In practice, the calculation of 
both rates TP and FP is based on the use of a reference 
binary image including two successive hyperbolas (see Fig. 
3a) to draw a comparison with the raw binary image. The 
parameter used to plot the ROC curve is the threshold 
whose value has been used to convert the raw image into a 
binary image.  

B. Simulated results 

At first, synthetic data have been obtained from FDTD 
simulations where the antennas and its environment have 
been modeled as visualized in Fig. 2a and 2b. The 
polarizations TE and TM have been considered to probe a 
dielectric and a conductive pipe, respectively. The center-to-
center distance between antennas are mmSR 291=  and  

mmSR 422=  respectively. A pipe with 12 mm radius 

buried at abscissa 500 mm in a two-layer soil ( 5.5'
1 =ε ,

9'
2 =ε , and 1

2,1 .01.0 −= mSσ ) at two depths 110 and 160 

mm ( 0.86λ  and 1.25λ at 1GHz) from the surface; the top 
layer is 70 mm thick. The radar is moved along axis Oy in 
the range [0; 1000] mm.  

Considering a dielectric ( 4.3=pvcε ) pipe filled with air 

and probed in the mirror configuration (see Fig. 2a) at the 
depth 110 mm, the raw Bscan shown in Fig. 3a highlights 
the clutter responses associated with the direct wave in the 
soil and the reflection on the second soil layer at 3.2 ns and 
3.7 ns, respectively. The first red diffraction hyperbola 
(positive waveform) occurs at 4.3 ns, and the second blue 
hyperbola (negative waveform) occurs at 4.8 ns. The two 
responses (clutter and target diffraction) overlap slightly. 
The time differences are similar to those obtained from the 
analytical ray-path model. We observe that the mean 
subtraction, PCA and ICA succeed in reducing significantly 
the clutter as shown on Fig. 3b, 3c and 3d respectively. The 
mean subtraction better enhances the first red hyperbola, 
while ICA better highlights the second blue hyperbola 
without introducing any distortion in the image; as a 
counterpart, PCA seems to introduce a signal artifact at 4.8 
ns. However, it appears from ROC curves plotted in Fig. 4a 
(reference hyperbola in Fig. 3a) that ICA and the mean 
subtraction techniques afford the best performance in clutter 
removal over PCA, i.e., the corresponding ROC curve is the 
nearest to the high left corner. 

 
Fig. 2. Both GPR configurations modeled using FDTD simulations: (a) 

the mirror (TE) configuration, and (b) the parallel (TM) configurations 

 
Fig. 3. Clutter reduction techniques applied on numerical data in the 

case of a dielectric air-filled pipe (r=12 mm, depth 110 mm) in the mirror 
configuration: (a) raw data with the reference hyperbolas, (b) mean 

subtraction, (c) PCA, and (d) ICA 

 
Fig. 4. Case of a dielectric air-filled pipe (r=12 mm) buried at a depth 

110 mm; (a) ROC curves, and (b) Ascans A1 issued from the three clutter 
reduction algorithms 

 

Fig. 4b shows the different Ascan signals at the apex of the 
hyperbola on Fig. 3a to Fig. 3d i.e., y = 500. It shows that 
the mean technique lowers more significantly the clutter 
component in the range [2;4] ns, while the three techniques 
correctly enhance the target signal ; ICA changes the target 
apex time position from 4.3 to 4.5 ns. 

Considering a conductive pipe probed in the parallel 
configuration (see Fig. 2b) at depth 110 mm, the raw Ascan 
visualized in Fig. 5a shows that the arrival times of the 
clutter (4.1 ns) and the second soil layer (4.8 ns) overlap 
the arrival time of the diffraction hyperbola whose apex is 
estimated at 4.5 ns. According to Fig. 5b, 5c, and 5d, PCA 
appears more efficient in removing the clutter and the 
second soil layer signals than ICA. Because the target 
response influences the clutter and the second layer 
responses, the signals appear dependent as opposed to the 
assumption for ICA (independent sources) is not respected. 
The ROC curves in Fig. 6a and Ascans A2 at the hyperbola  
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Fig. 5. Clutter reduction techniques applied on numerical data in the 

case of a conductive pipe (r=12 mm, depth 110 mm) in the parallel 
configuration: (a) raw data, (b) mean subtraction, (c) PCA, and (d) ICA 

 
Fig. 6. Case of a conductive pipe (r=12 mm) buried at a depth 110 mm; 

(a) ROC curves, and (b) Ascans A2 issued from the three clutter reduction 
algorithms 

 

apex in Fig. 6b confirms that PCA is the best algorithm in 
this case to remove signals not containing target 
information, while the mean introduces an artifact by 
increasing the amplitude at the apex. The conductive pipe 
has now been buried more deeply at the depth 160 mm to 
obtain resolved responses. From the raw Bscan visualized 
in Fig. 7a, we observe that the arrival times of the clutter, 
the second soil layer and the hyperbola apex are 4.1, 4.8 
and 5.4 ns, respectively. Presently, ICA affords better 
results than PCA in removing the clutter as mentioned by 
the ROC curves and the Ascans A3 in Fig. 8a and 8b. 

C. Experimental results 

The clutter removal techniques have been also applied 
on field data. The measurements with the UWB radar have 
been made in the large sandy box of the public square 
Perichaux, Paris 15th district. The sand was wet and not 
compacted with a depth estimated to 48 cm; its dielectric 
permittivity has been estimated to 3.5 according to previous 
work in [3].  

 
Fig. 7. Clutter reduction techniques applied on numerical data in the 

case of a conductive pipe (r=12 mm, depth 160 mm) in the parallel 
configuration: (a) raw data, (b) mean subtraction, (c) PCA, and (d) ICA 

 
Fig. 8. Case of a conductive pipe (r=12 mm) buried at a depth 160 mm; 

(a) ROC curves, and (b) Ascans A3 issued from the three clutter reduction 
algorithms 

 

In a first measurement campaign, a PVC air-filled pipe 
with a 12 mm radius buried in the sand box at 160 mm at 
position 500 mm has been probed with the GPR on a linear 
path [0;1000] mm (step 40 mm) using the mirror 
configuration. The raw Bscan in Fig. 9a shows components 
of clutter with significant roughness (unlike the smoothness 
in simulations) overlapping the hyperbola signature. As 
shown previously in numerical results where signals 
overlap, the best performance in clutter removal is obtained 
by PCA as visualized on the Bscans of Fig. 9b, 9c and 9d 
and on the ROC curves of Fig. 10a. Concerning the ROC 
curves, we remark that the FP rate does not reach zero 
because the hyperbola amplitude appears lower than 
components not containing target information.  

In a second measurement campaign, a conductive pipe 
with a 12 mm radius at abscissa 450 mm has been probed in 
the parallel configuration. The experimental conditions 
remain the same as in the previous measurements. From 
Fig. 9a, we  remark  that  the  clutter  does  not  overlaps  the 
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Fig. 9. Clutter reduction techniques applied on experimental data in the 

case of a dielectric air-filled pipe (r=12 mm, depth 160 mm) in the mirror 
configuration: (a) raw data, (b) mean subtraction, (c) PCA, and (d) ICA 

 
Fig. 10. Case of a dielectric air-filled pipe (r=12 mm) buried at a depth 

160 mm; (a) ROC curves, and (b) Ascans A4 issued from the three clutter 
reduction algorithms 

 

hyperbola response. In this case, the hyperbola signature is 
characterized by higher amplitude as compared to other 
signals. According to the processed Bscan in Fig. 11b and 
ROC curves in Fig. 11c, ICA shows the best performance in 
clutter removal because the hyperbola does not appear fully 
masked by the clutter. Moreover, we notice on Fig. 11b that 
ICA removes most of the multiple reflections occurring at 
late time delays, unlike PCA and the mean. 

V. CONCLUSION 

In this paper, we have presented the application of two 
different statistical techniques, namely PCA and ICA, for 
reducing the clutter and unwanted signals in ground-coupled 
GPR images in the case of a single target buried in a two-
layered medium. Our objective was to study the 
performance and the shortcomings of each technique using 
ROC curves. Considering numerical and field data, we have 
noticed that in the case of a shallow target, which 
significantly influences the clutter and the interface 
reflection, PCA appears to be more efficient than ICA. 
While in the case of a deep target, ICA appears to be more 
efficient   than   PCA.  Future   studies  aim  at   considering  

 
Fig. 11. Clutter reduction techniques applied on experimental data in the 

case of a conductive pipe (r=12 mm, depth 160 mm) in the parallel 
configuration: (a) raw data, (b) ICA, and (c) ROC curves 

 

different dielectric contrast between the target and the soil 
and also several targets in a single Bscan. Moreover, the 
influence of the polarization could be studied in order to 
obtain the response of the clutter as a function of the 
polarization. All this pre-processing will help us to further 
detect small defaults in a civil engineering structure.    
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