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Abstract

A theoryandlow computationaktostlinear algorithmis
presentedor estimatingalgebraic surfacesof secondde-
greefor representingan objectin 3D, basedon fitting in
the dual space(spaceof tangent planes)computedfrom
imagestaken by a calibratedcamer in a numberof posi-
tions. Theapproad and algorithmare designedo handle
implicit quadric surfaceswhich are regular or singulat in
a uniformway withoutdistinguishingthe two cases.A sig-
nificanceof thesequadric surfaceestimationresultsis, as
illustratedin the paper the estimationof complex 3D free
form shapesin a computationallysimpleway in terms of
guadricpatches.Thepaperexplainshowsingularquadrics
causeinstabilitiesin the 3D surfacefitting and representa-
tion, andpresentsegularization,basedon this undestand-
ing, to produceaccurmate stablesurfacerepresentations.

1. Intr oduction

Many algorithmsin computervision are basedon geo-
metricor algebraicapproachethatwork well for mostdata
configurationsout not for somebecausehey resultin sin-
gularitiesin the equationdeingsolved. A difficulty arises
becausén singularcasesperturbing-noisepr outliers or
missingdatausually producelarge erroneousvariationsin
thesolutions.The challengethenis to designa unified sys-
temthatproducestableaccuratesolutionsfor bothcasedy
regularizingthe equations.For mary problems,including
thosein this paper thatrequiresunderstandinghe sources
of the instabilitiesandtailoring the regularizationto those
sources.

Wefocushereon 3D surfacereconstructiorirom occlud-
ing contourdn imagegakenby amoving cameraDevelop-
mentsof this 3D reconstructiorproblemstartedassuming
known andsmallcameramotion[4, 2]. Thenanotherkind
of approachwas proposedin [8, 3, 10, 9] wherecamera
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motion canbe large betweernviews, but wherethe occlud-
ing contouris assumectleanly extractedfrom the images.
It is in [11] that the questionof optimally combiningall
the availablemeasurement®r betterrobustnesgo noiseis
tackledand partially solved. Anotherway to achieve ro-
bustnesdo noiseand missingdatais to usethe conceptof
dualspaceg8, 3, 6]. In [8] andthen[3], the dual concept
was introducedfor computingan algebraicdescriptionof
guadraticapparentontoursn theimageof a quadraticsur
face,andbasedon thefitted apparentontoursthe quadric
surfacecan be reconstructed.Taking a very different ap-
proach,3D reconstructiorfrom occludingcontourscanbe
reformulatedasa fitting problemin the dualspacedirectly.
Thisnew approactgive usthefollowing benefits:1) we can
work with theraw datain thedualspacej.e.,aquadricsur
faceis fit directly to the raw local tangentestimatesThus,
in eachimagewe canusean estimatedangentine atonly
onepointon theapparentontouror at mary pointson the
apparentontourwherethesepointsmay lie alongdiscon-
nectedcurve sggments- it doesnot matter We usetangent
lines wherever we can estimategood edges. However, for
theotherapproactbasecbn fitting quadriccurvesto appar
ent contours,the covariancef the coeficientsof a fitted
quadraticcurve, hence ameasuref theaccuray of thefit-
ted curve, arenot used. Therefore high variancequadratic
curve coeficients,suchasthoseoccurringwhenaquadratic
cune is fit to a shortroughly straightline apparentcon-
tour, introducelarge errorsin the computedquadricsurface
patch.Hence ourfit shouldbe muchmoreaccuraten gen-
eral. 2) We have an automaticway for handlingboth sin-
gularandregular cases.3) We have a computationallyfast
way for estimatinghigh order complicatedalgebraicsur
facesrom quadricpatches.

In [6], this propertyis explainedandadual linear fitting
algorithmto 3D reconstruchon-singularlgebraicsurfaces
is introduced.

In this paper we significantlyimprove [6] in two ways:



1) We proposea regularizationtechniqueto achieve a uni-
fied algorithmto dualreconstrucbothregularandsingular
quadrics,2) We changethe eigenfitting approactto a lin-
ear systemfitting approach,which improves the stability
greatly

Sec.2 summarizeshe dualfitting algorithmfor 3D re-
constructionof quadricsfrom occludingcontours. Then,
the causeof erroramplificationareanalyzedfor quadrics
in Sec.3. Two regularizationschemedasedon Ridge Re-
gressiorandgradientcontrol areusedto achieve stablere-
sults,asdescribedn Sec.4. Then, experimentsillustrate
the propertiesof the proposedalgorithmson syntheticand
realdatasets.

2. Dual Fitting for 3D Reconstruction

In this section,we briefly summarizethe approach6]
for non-singulaiquadrics.

2.1 Polynomials and Algebraic Surfaces

To avoid confusionin notation,we startwith a few rel-
evantdefinitionswhich are usedgenerallyin the algebraic
geometnyliterature[1].

Definition 1 An n-th degreepolynomial f,, with coefi-
cientsin afield & of dimensiord is a finite linear combina-
tion (with coeficientsin k) of n-th degree monomials.\e
will write sudh a polynomialf,, in theform:

fn(X): Z

{a:ar+-+ag<n}

aeX®

whele the sumis over a finite numberof d-tuplesa =

(a1, -, aq), With X = T], ..,z Thesetof all poly-
nomialsin X = (zy,...,z4) € k% with coeficientsin k is
denotedk[x1, - - -, 24].

In computervision applications,k is usually the real
field ¥ = IR, i.e, polynomial coeficients are real num-
bers.For example,a spherecenteredat (a, b, ¢) with radius
r in 3D canbe describedas a seconddegree polynomial
F(@9,2) = Ytaanttas<n} aijpziyizh = 2 +y? +
22 —2az — 2by — 2cz+a® +b? + ¢ — 2. In orderto made
clearthelinear propertyof the polynomialcoeficients,we
rewrite ary polynomialasaninnerproductof two vectors:

fn(X)z Z

{a:ay+-+aqg<n}

4 X = AY

whereA isthecoeficientvectorandY istheorderednono-
mial vector Let usnow formally introducealgebraiccurves
andsurfaces.

Definition 2 Let  fi, fa,- -+, fs
R[z1,---,zq4). Thenweset:
V(fl;"':fs) = {X € le : fJ(X) =071 SJ S S}' (1)
V(f1,---,fs) is named the affine variety defined by
fl;"';fs-

In 2D or 3D, whens = 1, the previously definedaffine
variety, which is the zerosetof a 2D or 3D polynomial,is
alsonameda 2D algebraiccurve or a 3D algebraicsurface.

be polynomials in

2.2 Algebraic Fitting

In practice,datasetsare samplesandthusa fitting al-
gorithm is requiredfor estimatingwhich variety bestap-
proximatesthe dataset. We assumea given data set of
pointsX; € IR?,i = 1,---,m, andavarietyV (f,) defined
by only onepolynomialf (i.e s = 1). If thesepointsdonot
lie exactlyonthevarietydueto thepresencef noise,aclas-
sical approachs to apply a least-squareftting to get pa-
rametervector A by minimizing the following “algebraic”
error:

Catgebraic = Y _(fn(Xi))2 =D AHYiV)A
i=1 i=1

Usually to avoid the trivial zero solution, the constrain
||A]| = 1 is addednto the previous minimization,andthus
coeficient vector A of the fitted polynomialis obtainedas
thesolutionof:

A = argmin {At D YiVA+ MAPA - 1)} 2)

i=1

where) is the Lagrangemultiplier of the constraint.
2.3 Dual Fitting

Given a calibratedcamerawe focuson the problemof
3D reconstructiorfrom 2D imagesseenas a fitting prob-
lem[6].

Givenaline tangentto the occludingcontourin theim-
age,the planetangento the surfacewe wantto reconstruct
canbe easilyestimatedrom the calibrationmatrix. These
tangentplanesare a subsetf all the planestangentto the
surfacewe want to reconstruct.But a 3D smoothsurface
canbedefinedasthe setof 3D pointsonits surfaceaswell
asthe setof its tangentplanes. Our approachs basedon
this duality property

To bemoreconcise dual spacesaredefinedby:

Definition 3 Let E be a vector spaceover IR. Thealge-
braic dual spaceFE* is definedto be the setof all linear
functionalsg : E — IR with respecto opemtions:

(¢ +¢)(e) = ple) + ¥(e)
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Figure 1. A tangent plane of a 3D point X to
the surface S.

(Ag)(e) = Ad(e)
whatever A € IR, e € E and¢, ¢ € E*.

Fromdefinition3, the setof all 3D affine planedlI is the
dual of thereal 3D spaceextendedwith homogeneouso-
ordinates.Althoughthe above definitionis valid for all the
tangentplanes,in the problemof 3D reconstructiorfrom
imagesonly the tangentplanesto the corvex part canbe
obtained.

Using the dual spacensteadof the primal spacehasan
importantadvantagewith respecto the 3D reconstruction:
no depthinformationis needed.To make this point clearer
seeFig. 1 wherethe tangentplanell is computeddirectly
from cameracenterC andtangentline [ to the occluding
contour At animagepoint U of occludingcontour(pro-
jectionontheimageof the contourgeneratoof the surface
S to be reconstructedyhe tangentiine [ is computedand
usingthe cameracalibrationthe normalizedtangentplane
P(U) of S is estimated.Sincewe usehomogeneousoor
dinatesall the4D pointspP(U) arepointsonthe manifold
£, 1.e.,dualsurface,in dual spaceformedby all the planes
tangentto S. Sincethereis anisomorphismbetweenthe
dual spaceof 3D affine planesandthe 3D primal spaceof
pointsin homogeneousoordinatesthis meanshatthere-
constructiorof thedualsurface€ in thedualspaces equi-
alentto the reconstructiorof the surfaceS in the primal
space.

This meanghatby workingin the spaceof planesrather
thanstayingin the original 3D spaceasin the classicalap-
proacheswe setthe problemasfitting a 4D hypersurface,
i.e., thedual surface&, on 4D datapointswhich represent
3D planesin the original 3D space.Whenthefitting of £
is performed,ary normalto £ gives,up to a scalefactor, a
pointonS. Thez, y, z coordinate®f thepointonS canby
recoveredby dividing by the 4¢h component.Thus,S has
beenimplicitly reconstructedy fitting its dualsurface in

thespaceof planes.Thisis how to computepoint estimates
on S from thealgebraicsurfacefit in thedualspace.

We chooseo usethe algebraicrepresentationf the 4D
surfacessinceit leadsto linearfitting techniquesTheclas-
sicalandsimplestway to fit analgebraicsurfaceto data,as
explainedin the previous section,is to minimize the alge-
braic distanceover the setof 4D datapoints(i.e 3D affine
planes)I; = (p;, gi, 74, 8:), 1 < i < m, thatis

Catgebraic = Y (fr(I1)* = A™! (Z YY) AT (3)
i=1 i=1
S*

usingthe vectorrepresentationf polynomial £ asin (2).
The symmetricmatrix S* is the so-calledscattermatrix of
monomials.

As previously, to avoid the trivial zero solutionin the
minimizationof (3), the constraint]| 4*||? = 1 is imposed
which modifiesthe minimizationas:

m
A* = argmin (A*t (Z YYt> A* (AT A — 1))

i=1

4)

with the introductionof Lagrangemultiplier A. The solu-
tion to (4) is givenby the unit eigervectorassociateavith
Amin, thesmalleseigervalueof S*. In summarytheclassi-
calleast-squarefitting algorithmconsistan computingthe
scattermatrix S* of monomialsfrom a setof dataplanes,
andthenfinding the unit eigervectorof 5* associatedvith
its smallesteigervalue.

This algorithmworkswell for non-singulai3D surfaces
of degreetwo (i.e quadrics)whenthe surfaceis correctly
sampledasshovnin [6]. For singularquadricsspecialcare
mustbetakenbecaus®f numericalinstabilities.

3. Error Analysis of Dual Fitting of Quadrics

Mostdatawe measure@resubjecto noiseandperturba-
tions. For example calibrationerrorsandcontourdetecting
errorsare always present. Theseerrorswill propagatdan
thedualfitting 3D reconstructionHence,jt is necessaryo
analyzehow theseerrorspropagate.

3.1 Err ors on Computing TangentPlanes

The mappingfrom the 2D tangentline in the imageto
the 3D tangentplaneto the surfaceis alinearrelation:

= MY (5)

wherell is the planeparametewrector, [ is the tangentine
parameterectorand M is the4 x 3 projectionmatrix. Or-
dinary edgedetectorswill give ustheedgepointU andin-
tensitygradientdirectionn, which canbe usedto compute



tangentine descriptiori as:

= ( —gtn ) (6)

Using (5), the tangentplaneis describedn termsof n and

U as:
m= M ( ot ) (7)

Thereforetheerrorin estimatingangentplanell is:

_ t n t én
oT = oM ( —Utn ) +M ( —§U'n — Utén ) ®

In (8), the planeerror consistsof two terms: oneis dueto
calibrationerrorsé M, andthe otheris dueto measurement
errorséU of thepositionandén of thenormalof thecontour
point.

3.2 Err or Propagationin Fitting

The propagatiorof tangentplaneerrorsin thefitting is
rathercomplicatedo characterizesincethefitting consists
of aneigenproblem.Thetheoryof perturbationglealswith
errorpropagatiorin suchtypesof eigenproblemg7]. Due
to thecompleity of thistheory wewill justoutlinethefact
that the error propagationis relatedto a decreasingunc-
tion of the ratios of the other eigenvaluesto the smallest
eigervalue. In practice,dueto lack of data,the smallest
eigervalueis closeto the othersmall eigervalues. In such
a case thefitting is relatively unstablewhennoiseor per
turbationsare added. Notice that by treatingthe fitting as
alinearfitting problemratherthanan eigenproblem,more
stablefitting canbe achieved undernoiseandmissingdata
using gradientonefitting asdescribedn [12]. In Sec.4,
we discusshow to usethe gradient-oneegularizationtech-
nigue, to have a more stablefitting of the dual surfacein
caseof noisyandmissingdata.

3.3 Err or Propagationfrom Dual to Primal Spaces

After the dual surfacefit is performedwe have to com-
puteits correspondingrimal surface. As explainedin [6],
the dual surfaceof a quadricis a quadric,andthe primal
surfaceof a dualquadricis alsoa quadric. More precisely
if D* is the coeficient matrix of the dual quadricin ho-
mogeneousoordinatesthe coeficient matrix of the corre-
spondingprimal quadricis D = D*~!. Thisinverseis not
alwayswell definedwhenthe determinanbf D* is numer
ically closeto zero. Indeed,whenthe dual quadricD* is
singular(i.e aconeor acylinder), the primal quadricis also
singular In suchcaseall theerrorsonits entriesaremagni-
fied by thematrixinversion.Following, we useperturbation

techniquedo quantitatvely showv errorpropagatiorassoci-
atedwith theinverseoperation.

An estimatectual quadriccoeficient matrix D* canbe
seenasD* = D* + §D*. D* is the underlyingnoiseless
dual surface matrix which we want to estimateand 6 D*
is the error in the dual quadricfitting. Sinceit is known
that for a pair of correspondingprimal and dual quadrics
D*D = I;, wededuce:

(D* +6D*) x (D +6D) = Iy
wherel, is theidentity matrix. Thus,afterexpansion:
D* D+6D* 6D+ D* 6D + 6D* D =1,

Thefirst termin theleft handsideis cancelledby theterm
in right handsideandsecondermin theleft handsideis a
secondrdersmallestermwhich canbeignored.Thus,we
get:
D* 6D +6D* D=0
ThenusingD = D*~!. Theerrorontheprimal quadricis:
6D =—D*"' 6D* D*! (9)

From(9) it is clearthatfitting errorsareamplifiedduring
the transformatiorfrom the dual spaceto the primal space
when the determinantof D* is small. This is the main
sourceof numericalinstabilitieswe obsened in practice.
In Sec.4, we discusshow to useRidge-rgressiorregular
ization techniquesn computingD* ! in orderto reduce
theerroramplificationeffectin thetransformatiorfrom the
dual to primal spacewithout a resultingdistortion of the
desiredfitting result.

3.4. What are Singular Cases?

In this section,we investigatethe problemof singulari-
ties for algebraicsurfacesonly. This will help usto intu-
itively explain the causef numericalinstabilities of the
dual fitting algorithm. In the caseof explicit surfaces,a
singularpoint (of the first specie)is a surfacepoint where
thetangentplaneis not defined.In algebraiogeometry{1],
singularpointsareusually definedaspointson the surface
wherethe gradientof f,, is zero. For us, in the contet of
dualfitting, a singularpoint is definedasthefollowing :

Definition 4 Let f,,(X) € IR[z1,22,---,z4] andlet X €
V (fn). Thevectoroffirstderivativesof f,(X), Gy, (X) =
V fn(X) = (8;fn(X)), is called the Gradientvectorof f,
at X. Moreover, thematrix of secondderivativesof f,,(X),
H;, (X) = ViV fo(X) = (8;0; fn(X)), is calledthe Hes-
sianmatrixof f,, at X. Thecoeficientmatrix of thequadric
which approximateshealgebraic surfacearround X is:

Gy, (X)

-G (X)
in homageneousoorinates. Thus:



e X isasingularpointof V ( f,,) whentheapproximated
quadricmatrix Dy, (X) is notfull rank.

o otherwise X is a non-singularpointof V'(f,,)

Thepreviousdefinitionimpliesthatapoint X onthesurface
(fn(X) = 0) wherethegradient 7, (X) is zerois singular
Thus:

Definition 5 A singular surface in the contet of the dual
fitting, is an algebraic surfacewhich containsat leastone
singularpoint.

Theideaof the above definitionsis thata non-singulaisur

facedoesnothave adualsurfacethatis locally collapsedn

the dual space,i.e, the dual surface maintainsa full rank
matrix for eachquadric approximationat each point all

alongits surface. For example,asseenpreviously, among
seconddegreeirreducible (non-factorizable)polynomials,
conesand cylinders are singular surfacesbecausehe set
of tangentplanesalong conesand cylinders collapsesone
dimensionin the dual space. Both dual shapedie on hy-

perplanesn 4 dimensionahomogeneouspace.They are
planarquadriccurvesin dualspacej.e., degree2.

From definition 4, we can seethat a locally estimated
primal surfaceata singularpointis unstableébecausef two
reasonsl) in dual spacefitting a surfacemodelto a curve
resultsin anunstablesurfacefit; 2) computingthe gradient
of this fitted surfaceat pointsin the vicinity of the curve
in orderto geta surfacepointin the primal spaceproduces
unstablegradients. Thesedifficulties canbe illustrated by
a simple example. Supposene have a conewhosetip is
at (0,0, 0), theorigin of thereferencesystemin the primal
space,i.e., 3D surface, coordinates. Since every tangent
planepasseghroughthe tip (approximatelyfor real data),
the dual points collapseinto a scatterarounda curve in a
planewhich hasnormalvector(0, 0,0, 1) in homogeneous
coordinates As shawn in Fig. 2, fitting a surfacemodelto
datascatteredroundacurveis anill-posedproblem.More-
over, anormalto thedualsurfacecorrespondso a pointon
theprimalsurface but for singularpoints,this normalis not
uniquelydefined. Thus,whenwe normalizethe normalby
dividing thenormalby it's lastcomponento geta 3D point
of thecone,thecomputedbointis far away from its correct
value.

To copewith thosesingularsurfacesthesimplestideais
to determinewhetherthe estimateddual surfacecollapses
in dimension. However, this approachrequiresa detec-
tion, and thus a threshold,on dimensioncollapse,which
is difficult to perform sincewe do not a priori know the
correctdual surface. Consequentlyin the following sec-
tions, we proposea unified dual fitting 3D reconstruction
algorithmwhich doesnt needto distinguishbetweersingu-
lar andnon-singularcases.The mainideato build suchan
algorithmis to addfew well chosenconstraintsvhich will

Figure 2. This illustration shows there is am-
biguity in fitting a surface to a planar curve
data. The red dots are the data points whic h
lie on a plane. When using real data, these
points will lie near but off the plane. There
is then huge variability in the range of sur-
faces that fit this scatter -around-the-cur ve
data equally well. One of the possib le fitting
results, a hyperbolic surface , is shown. This
leads to an estimated hyperbolic surface in
the primal space, whic h is a poor representa-
tion for the true cone. Itis clear that additional
information is required to get a meaningful fit.

biassingularcases little towardsnon-singularcaseswith-
outmodifyingthenon-singulacasesThis approactallows
usto drasticallystabilizethefit of singularquadrics.

4. Dual Fitting 3D reconstruction Regulariza-
tion

As describedpreviously, the problemof unstable3D re-
constructions dueto singularpointswherelocally the sur
faceandits dualsurfacearesingularquadrics For ill-posed
problemsno uniquesolutionexists becausein effect, there
is notenoughinformationspecifyingit [13]. To getamean-
ingful solution,we introducedtwo kinds of regularizations
in the 3D reconstructioralgorithmto biasthe solutionto-
wardsnon-singulatocal quadrics We first introducea reg-
ularizationschemebasedon scalingandRidge Regression
to stabilize the transformationbetweenthe dual and pri-
mal space. Secondwe proposeanotherschemebasedon
gradient-oneonstrainto dealwith theproblemof dualdata
collapsein dimension.



4.1 Ridge-Regressionfor Dual to Primal Transfor-
mation

Closeto singularpoints, the local quadricapproximat-
ing the surfaceis closeto singular Its quadriccoeficient-
matrix in homogeneousoordinateshasa badconditioning
numberandleadsto abadlyconditionednversematrix[5].

However, if we biasthefitted dual quadricby addinga
well chosenmatrix, we cangreatlyincreasehe stability of
the primal quadriccoeficient-matrix without significantly
changinghedesiredshape.

To begin, every dual datapoint II; = (pi,qi, 14, Si)
which representsa tangentplane of the primal surfaceis
normalizedto enforcenorm one of the tangentplane,i.e
p? + ¢ + r? = 1. Then,if thesetof normalized(IT;), 1 <
i < m is closeto a plane,the primal quadricis a coneor
cylinder andthusthe normal NV to the planegivesthe tip
of the primal coneor directionof cylinder axisin homoge-
neouscoordinatesNormal N canbesimply estimatedrom
thedataset(II;) by minimizing:

N = arg min {Nf > H,-H,-tN} (10)

i=1

under||N||? = 1. It is a minimum value eigenproblem.
Notice thatafterthetip IV is estimatedthe primal coordi-
natesystemorigin canbe movedto thetip. Then,tangent
planeq1II;) arerecomputedn thetranslatecoordinatesys-
tem. This helpsto reducenumericalinstabilitiesby center

ing the datasetbeforefitting. Beforefitting, whitening of

matrix y_." II,11,* canalso be performedwith resulting
adwantages.

Let D* denotethe dualquadricmatrix obtainedafterfit-
ting. To copeuniformly with bothsingularandnon-singular
casesratherthanusingD = D*~! asprimal quadricma-
trix, we use:

D = (D* +ANNY) ™ (11)

where) controlsthe amountof regularization

Intuitively, AN N'? in theright handsideof (11) pullsthe
overall primal surface,i.e., the 3D objectsurface,towards
thetip point. Equivalently, for singularcasesasthe \ in-
creasestheprimal quadricdescribedy (11) betterapprox-
imatesthetrue singularquadric. For the non-singularcase,
the effect of ANN? on D is smallif X is small compared
to D*. This regularizationturnsout to be appropriatefor
handlingcylindersaswell.

4.2 Gradient-One Dual Fitting

Sincefitting a curve with a surface modelin the dual
spaceis an ill-posed problem, extra information can be
addedto force the fitting to get the desirableresult. For
example,in Fig. 2, if we know N the normalof the plane

wherethe dual surfaceis included,thenthe hyperboloidis
moredesirablethanthe ellipsoid becausehe ellipsoid has
pointsfar away from theplaneN.

To force the dual fit to be close to plane N in the
neighborhoodof the data points, we put soft constraint
IVf — N||? = 0 into the fitting algorithm, where N is
thenormalof the planegoingthroughthe dataestimatedhs
in the previoussection.We canrewrite theabove constrains
into a differentialform whichis morecorvenientto beused
in thefitting.

0=|VFf=N|?=AVYVY!A-2N-VY'A+1 (12)

When constraint(12) is introducedinto the fitting mini-
mization,we get:

A =argmin {AY(S+p X", VY, VYA
—2uAt 221 (N-V)Y;: }

From definition 4, locally at a singularpoint, pointson
thedualsurfacelie in aplanarcurveinsteadof a curvedsur
face,andthustheconstrainbiaseghefit to acloseto planar
guadric. On the contrary whenthe point is non-singular
this constraintdoesnot changetheresultingfit much.

With the useof the gradient-oneconstraintthe solution
of the regularizedfitting problem,i.e of (13), consistsin
solvingthelinearsystem:

m 1rm
A= <Z VY + ,NY;VY}) [Z (N- V)Y

=1 =1

(13)

(14)

We call the above fitting algorithm gradient-onedual
fitting becausdhe constraintin (13) is closeto gradient-
one constraintintroducedin [12] which was usedto in-
creasalirectalgebraiccurvefitting stabilityin primalspace.
In [12], thegradient-oneonstrainusedis (N'V f —1)2 +
(T'Vf)2 = 0 which also implies that the gradient of
f locally agreeswith the data normal at regular points.
Therefore we have appliedwith succesgo dualfitting the
gradient-oneonstraintusedby [12]. Here,we useonly the
normalterm of the gradient-oneconstraint. But a basisof
the tangentplaneto the dual curve at every II; canbealso
easilyobtainedusinginformationaboutpoint U; ontheim-
agesasexplainedin [6].

Themainadvantageof gradient-onelualfitting overpre-
vious eigendualfitting in [6] is that errorspropagatéan a
betterway. Indeed for gradient-onelualfits, theerroranal-
ysis canbe performedmoreeasily sincethe minimization
leadsto alinearsystemjnsteadof aneigenproblem.

5. Experiment Results

5.1 Synthetic data experiments

We conductedexperimentson syntheticdatato shav
how the gradientoneweightingfactory effectsthe fitting



results. In the following two experimentswe setground
truth surfaceswhich we wantto reconstrucastheellipsoid
z?+1y? +12% = 1 andtheconez? — 1y? + 122 = 0. The
cameras about1500millimetersaway from the centersof
theseobjects. Thenwe move the camerato 5 differentpo-
sitionsto computethe contoursin 5 differentimages.The
baselinebetweerthe lastcameraandthe first cameraposi-
tionsis about500 millimeters. The externalparametersire
known perfectly Theusedinternalparameteraretheones
of a Nikon 5000cameraat manualfocus f = 7.1mm. Af-
ter thosecontourpointsweregeneratedisinggroundtruth
surfaceparameterandcameranternalandexternalparam-
eterswe usedthe gradient-onalgorithm(see(13)) to esti-
matethe primal surfaceunderdifferenty.

The resultsof both experimentsare shovn in Fig. 3(a)
andFig. 3(b). Figuresin Fig. 3 shav error changesvhen
gradient-oneveightingfactory increaseslin Fig. 3(a), we
canseethatthe computeckllipsoidis biasedaway from its
true shapeas y increases.Whenu < 10~* the bias of
thereconstructedurfaceis lessthan1%, on its threeaxes.
Thebottomfigure of Fig. 3(b) shavsthatthereconstructed
shapds closerto aconeastheweightingfactory increases,
but the bias on the reconstructeghapeincreasesas well.
The trade-of betweenincreaseof the stability and bias of
thereconstructiorseemsorrectfor a . around10~=%. This
shawvs thatthe algorithmwe proposedn the Sec .4 is valid
for both non-singularand singularsurfaces. Therefore,it
canbe called“unified dual fitting 3D reconstructioralgo-
rithm”.

5.2 On the Choiceof the A and u

Theweightingfactor, A, in (11) is setby:
A = sign(Das)o min {Di;}

wheresign () is thesignumfunctionwhichis usedto avoid
changingthe fitted shapefrom a hyperbolicsurfaceto a
parabolicsurface. « is alwayssetto 2% which guarantee
areconstructeghapebiaswithin 2% andimprovesthe sta-
bility of singularshapegreatly

Fig. 4 shavs how the shapechangesvhena increases.
Thetip of Fig. 4(a) is muchsharperthanthat of Fig. 4(b).
This confirmsthe discussionin Sec.4. As « increases,
the tip of the reconstructecshapewill approachthe true
value,becomingsharperandsharper But for non-singular
guadrics,reconstructedhapedivergesaway from the true
shapeWe noticedthatfor thefunnel,crosssectionis nearly
acircle. But the ratio of the two axesmovesaway from 1
as ) increasesFromthe experiment,we alsocanseethat
when) < 10~2, theratio changes little. Thisjustifiedour
setting) to thefixedvalue10—* in thefollowing realexper
iments. Moreover, the gradient-onaveightingfactoris set
to u = 10~* in (13), asexplainedin the previoussection.

(b)

Figure 4. Different )\ effects on the recon-
structed shape for a cone. In (a) A is set to
100% of the shor test axis, and in (b) A is set
to 2% of the shor test axis.
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Figure 3. p effects on the dual gradient-one reconstruction for a non-singular and asingular quadrics.
In column (a), three curves display the p effect on ellipsoid axis lengths, a, b, ¢, respectivel y. x-axis is
log(p) and y-axis is the relative error. In column (b), the reconstructed primal surface is a hyperboloid
having axis z and elliptic cross-section; the three curves display the p effect on cross-section ellipse
axes lengths at z = 1, and bottom, on the distance of the hyperboloid to the true tip position of the

cone.

5.3 3D ReconstructionsBasedon Real Data

We performedealexperimentgo testthe3D reconstruc-
tion dual algorithm proposedin Sec.4. In theseexperi-
ments,differentobjectsare usedwith a Nikon 5000 digi-
tal camera.The cameras posedat about1200millimeters
away from the centerof the object. Thenwe moved the
camerato differentpositionsto take images.Contoursare
extractedfrom imagesusingthe Canry edgedetector The
baselinebetweenthe last cameraand the first camerass
about700 millimeters. We useZhangs cameracalibration
algorithm[14] to calibratecameranternalandexternalpa-
rameters.

Fig. 5 shavs the setupof the gradientonefitting exper
imenton a singularshape(a cone)andthe 3D reconstruc-
tion. In Fig. 5(a),thefunnelwhichwe wantto reconstrucis
placedright undera planarcalibrationboardwhich is used
to calibratecamergparametersWe seefrom theimagethat
the shapes closeenoughto acone.

Fig. 6 shavs a cylindrical box for experimentand the
reconstructionAlthougha cylinderis a singularshapethe
proposediualfitting algorithmcanreconstrucit well.

Fig. 7(b) illustratesa 4th degreealgebraicsurfaceesti-
matedfrom occludingcontoursin 7 views of the sculpture
shavnin Fig. 7(a). 3D primal spacéds partitionedinto large
cubesa dual quadricsurfaceis estimatedn eachcubeus-
ing thealgorithmin thispaperthenpointsaresampledrom
the primal surfacefor eachof the estimateddual quadric

surfaces,anda single 4th degreealgebraicsurfaceis fit to

thesesampledpoints. See[6] for a discussiorof this data
andreconstructiorbut usingthe original dual quadricsur

faceestimatorin [6] ratherthantheimproved quadricsur

faceestimatotin this presenpaper

6. Conclusionand Outlooking

We proposeda new stablelow-computational-coskin-
earfitting algorithmfor 3D surfacereconstructiofrom oc-
cluding contours. The analysisof the causeof troublein
dualfitting allows usto proposean algorithmwhich han-
dlesshapesvith andwithoutsingularpartsin aunifiedway
withoutdistinguishingheexisting singularitycaseor cases.
For quadricsurface,singularsurfacesarethe coneandthe
cylinder. We illustratethe practicaleffectivenesf the ap-
proachon real and syntheticdata. Theseare major exten-
sionsof thealgorithmsin [6].
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Figure 5. (a) one of 8 images used for fun-

nel reconstruction.

(b) the 3D model com-

puted using dual fitting 3D reconstruction al-
gorithm.
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Figure 7. (a) the sculpture used for recon-
struction.  (b) the 4th degree polynomial 3D
model computed using the dual fitting 3D re-
construction algorithm. The measured data
was that used by author s in [6].
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