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Abstract

A theoryandlow computationalcostlinear algorithmis
presentedfor estimatingalgebraic surfacesof secondde-
gree for representingan object in 3D, basedon fitting in
the dual space(spaceof tangent planes)computedfrom
imagestaken by a calibratedcamera in a numberof posi-
tions. Theapproach andalgorithmare designedto handle
implicit quadricsurfaces,which are regular or singular, in
a uniformwaywithoutdistinguishingthetwo cases.A sig-
nificanceof thesequadric surfaceestimationresultsis, as
illustratedin the paper, the estimationof complex 3D free
form shapesin a computationallysimpleway in termsof
quadricpatches.Thepaperexplainshowsingularquadrics
causeinstabilitiesin the3D surfacefitting andrepresenta-
tion, andpresentsregularization,basedonthisunderstand-
ing, to produceaccuratestablesurfacerepresentations.

1. Intr oduction

Many algorithmsin computervision arebasedon geo-
metricor algebraicapproachesthatwork well for mostdata
configurationsbut not for somebecausethey result in sin-
gularitiesin theequationsbeingsolved. A difficulty arises
becausein singularcases,perturbing-noise,or outliers or
missingdatausuallyproducelarge erroneousvariationsin
thesolutions.Thechallengethenis to designa unifiedsys-
temthatproducesstableaccuratesolutionsfor bothcasesby
regularizingthe equations.For many problems,including
thosein this paper, that requiresunderstandingthesources
of the instabilitiesandtailoring the regularizationto those
sources.

Wefocushereon3D surfacereconstructionfromocclud-
ing contoursin imagestakenby amovingcamera.Develop-
mentsof this3D reconstructionproblemstartedassuminga
known andsmallcameramotion [4, 2]. Thenanotherkind
of approachwas proposedin [8, 3, 10, 9] wherecamera

motioncanbe largebetweenviews, but wherethe occlud-
ing contouris assumedcleanlyextractedfrom the images.
It is in [11] that the questionof optimally combiningall
theavailablemeasurementsfor betterrobustnessto noiseis
tackledand partially solved. Another way to achieve ro-
bustnessto noiseandmissingdatais to usetheconceptof
dual spaces[8, 3, 6]. In [8] andthen[3], the dual concept
was introducedfor computingan algebraicdescriptionof
quadraticapparentcontoursin theimageof aquadraticsur-
face,andbasedon thefitted apparentcontoursthe quadric
surfacecan be reconstructed.Taking a very different ap-
proach,3D reconstructionfrom occludingcontourscanbe
reformulatedasa fitting problemin thedualspacedirectly.
Thisnew approachgiveusthefollowing benefits:1) wecan
work with theraw datain thedualspace,i.e.,aquadricsur-
faceis fit directly to theraw local tangentestimates.Thus,
in eachimagewe canuseanestimatedtangentline at only
onepoint on theapparentcontouror at many pointson the
apparentcontourwherethesepointsmay lie alongdiscon-
nectedcurvesegments– it doesnot matter. We usetangent
lines wherever we canestimategoodedges.However, for
theotherapproachbasedon fitting quadriccurvesto appar-
ent contours,the covariancesof the coefficientsof a fitted
quadraticcurve,hence,ameasureof theaccuracy of thefit-
tedcurve,arenot used.Therefore,high variancequadratic
curvecoefficients,suchasthoseoccurringwhenaquadratic
curve is fit to a short roughly straight line apparentcon-
tour, introducelargeerrorsin thecomputedquadricsurface
patch.Hence,ourfit shouldbemuchmoreaccuratein gen-
eral. 2) We have an automaticway for handlingboth sin-
gularandregularcases.3) We have a computationallyfast
way for estimatinghigh order complicatedalgebraicsur-
facesfrom quadricpatches.

In [6], thispropertyis explainedandadual linear fitting
algorithmto 3D reconstructnon-singularalgebraicsurfaces
is introduced.

In this paper, we significantlyimprove [6] in two ways:
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1) We proposea regularizationtechniqueto achieve a uni-
fied algorithmto dualreconstructbothregularandsingular
quadrics,2) We changethe eigenfitting approachto a lin-
ear systemfitting approach,which improves the stability
greatly.

Sec.2 summarizesthe dual fitting algorithmfor 3D re-
constructionof quadricsfrom occludingcontours. Then,
the causesof error amplificationareanalyzedfor quadrics
in Sec.3. Two regularizationschemesbasedon RidgeRe-
gressionandgradientcontrolareusedto achieve stablere-
sults,asdescribedin Sec.4. Then,experimentsillustrate
thepropertiesof the proposedalgorithmson syntheticand
realdatasets.

2. Dual Fitting for 3D Reconstruction

In this section,we briefly summarizethe approach[6]
for non-singularquadrics.

2.1. Polynomialsand Algebraic Surfaces

To avoid confusionin notation,we startwith a few rel-
evantdefinitionswhich areusedgenerallyin the algebraic
geometryliterature[1].

Definition 1 An � -th degreepolynomial
���

with coeffi-
cientsin a field � of dimension� is a finite linear combina-
tion (with coefficientsin � ) of � -th degreemonomials.We
will write such a polynomial

� �
in theform:� ���	��

� ������ ����������� ������� � �"! � � �

where the sum is over a finite numberof d-tuples # �� #
$&%('�'('�%�#*) 
 , with
� � �,+ $ ��-.� )�/ �10- . Thesetof all poly-

nomialsin
�2�3� / $4%(5�5(56% / ) 
87 � ) with coefficientsin � is

denoted��9 / $ %('�'('6% / )(: .
In computervision applications, � is usually the real

field � �
IR, i.e, polynomial coefficients are real num-

bers.For example,a spherecenteredat
� ! %<;&%�= 
 with radius> in 3D can be describedas a seconddegreepolynomial� � / %�?�%A@ 
B�DC �A��� � � ������� ��� � � ��� ! -�EAF / - ? E @ F � /HGJI ? G8I@ GLKNM ! / KOM ;<? KNM =(@ I ! G I ; G I = G�K > G . In orderto made

clearthe linearpropertyof thepolynomialcoefficients,we
rewrite any polynomialasaninnerproductof two vectors:� ���P��

� ������ ����������� ������� � �"! � � � �RQTSVU
where

Q
is thecoefficientvectorand

U
is theorderedmono-

mial vector. Let usnow formally introducealgebraiccurves
andsurfaces.

Definition 2 Let
� $ % � G %('�'('6% �4W be polynomials in

IR 9 / $ %�'('�'(% / )(: . Then,weset:X � � $�%('('�'(% � W 

�ZY[�\7
IR
)^] � E �P��

�R_ %�`^a�bcaed1f 5 (1)X � � $ %�'('('(% �4W 
 is named the affine variety defined by� $ %�'('�'6% �4W .

In 2D or 3D, when d � ` , thepreviously definedaffine
variety, which is thezerosetof a 2D or 3D polynomial,is
alsonameda 2D algebraiccurveor a 3D algebraicsurface.

2.2. Algebraic Fitting

In practice,datasetsaresamples,andthusa fitting al-
gorithm is requiredfor estimatingwhich variety bestap-
proximatesthe dataset. We assumea given dataset of
points

� - 7 IR
) %�g � `1%�'('('�%�h , andavariety

X � ��� 

defined

by only onepolynomial
�

(i.e d � ` ). If thesepointsdonot
lie exactlyonthevarietydueto thepresenceof noise,aclas-
sical approachis to apply a least-squaresfitting to get pa-
rametervector

Q
by minimizing the following “algebraic”

error: i&j6k�l6mVnpoAj -rq �ts� -ru $ � � ���P� - 
�
 G �vs� -ru $ QTS<�	U - UwS- 
xQ
Usually to avoid the trivial zero solution, the constrainy Q y � ` is addedinto thepreviousminimization,andthus
coefficient vector

Q
of the fitted polynomialis obtainedas

thesolutionof:Qz�|{1}�~���������Q S s� -ru $ U - U S- Q I�� �pQ S Q K ` 
�� (2)

where� is theLagrangemultiplier of theconstraint.

2.3. Dual Fitting

Given a calibratedcamera,we focuson the problemof
3D reconstructionfrom 2D imagesseenasa fitting prob-
lem[6].

Givena line tangentto theoccludingcontourin the im-
age,theplanetangentto thesurfacewe wantto reconstruct
canbeeasilyestimatedfrom thecalibrationmatrix. These
tangentplanesarea subsetof all the planestangentto the
surfacewe want to reconstruct.But a 3D smoothsurface
canbedefinedasthesetof 3D pointson its surfaceaswell
asthe setof its tangentplanes.Our approachis basedon
this dualityproperty.

To bemoreconcise,dualspacesaredefinedby:

Definition 3 Let � be a vector spaceover IR. The alge-
braic dual space ��� is definedto be the set of all linear
functionals� ] ��� IR with respectto operations:� � I�� 
<� i 
�� � � i 
 I�� � i 
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whatever � 7

IR, i 7 � and �L% � 7 ��� .
Fromdefinition3, thesetof all 3D affineplanes� is the

dualof the real 3D spaceextendedwith homogeneousco-
ordinates.Althoughtheabove definitionis valid for all the
tangentplanes,in the problemof 3D reconstructionfrom
imagesonly the tangentplanesto the convex part can be
obtained.

Using thedualspaceinsteadof theprimal spacehasan
importantadvantagewith respectto the3D reconstruction:
no depthinformationis needed.To make this point clearer,
seeFig. 1 wherethe tangentplane � is computeddirectly
from cameracenter

�
and tangentline � to the occluding

contour. At an imagepoint

�
of occludingcontour(pro-

jectionon theimageof thecontourgeneratorof thesurface
�

to be reconstructed)the tangentline � is computed,and
usingthe cameracalibrationthe normalizedtangentplane� � � 


of

�
is estimated.Sincewe usehomogeneouscoor-

dinates,all the4D points � � � � 

arepointsonthemanifold�

, i.e., dualsurface,in dualspaceformedby all theplanes
tangentto

�
. Sincethereis an isomorphismbetweenthe

dualspaceof 3D affine planesandthe 3D primal spaceof
pointsin homogeneouscoordinates,this meansthat there-
constructionof thedualsurface

�
in thedualspaceis equiv-

alent to the reconstructionof the surface

�
in the primal

space.
Thismeansthatby working in thespaceof planesrather

thanstayingin theoriginal 3D spaceasin theclassicalap-
proaches,we settheproblemasfitting a 4D hyper-surface,
i.e., the dual surface

�
, on 4D datapointswhich represent

3D planesin the original 3D space.Whenthe fitting of
�

is performed,any normalto
�

gives,up to a scalefactor, a
pointon

�
. The / , ? , @ coordinatesof thepointon

�
canby

recoveredby dividing by the �1��  component.Thus,

�
has

beenimplicitly reconstructedby fitting its dualsurface
�

in

thespaceof planes.This is how to computepointestimates
on

�
from thealgebraicsurfacefit in thedualspace.

We chooseto usethealgebraicrepresentationof the4D
surfacessinceit leadsto linearfitting techniques.Theclas-
sicalandsimplestway to fit analgebraicsurfaceto data,as
explainedin the previoussection,is to minimize the alge-
braic distanceover the setof 4D datapoints(i.e 3D affine
planes)� - ���¢¡ - %A£ - % > - %Ad - 
 , `¤a¥g�a¥h , thatisi&j6k�l6mVnpoAj -rq �ts� -ru $ � � �� � � - 
�
 G �eQ � ST¦ s� -ru $ U �- U �- S¨§© ª�« ¬­�® Q � (3)

usingthevectorrepresentationof polynomial
� �� asin (2).

Thesymmetricmatrix ¯�� is theso-calledscattermatrix of
monomials.

As previously, to avoid the trivial zero solution in the
minimizationof (3), the constraint

y Q � y G � ` is imposed
which modifiestheminimizationas:Q � �R{1}�~����r� ¦ Q � S°¦ s� -�u $ U �- U �- Sx§ Q � I±� �	Q � S Q � K ` 
 §

(4)
with the introductionof Lagrangemultiplier � . The solu-
tion to (4) is givenby the unit eigenvectorassociatedwith� s - � , thesmallesteigenvalueof ¯�� . In summary, theclassi-
cal least-squaresfitting algorithmconsistsin computingthe
scattermatrix ¯�� of monomialsfrom a setof dataplanes,
andthenfinding theunit eigenvectorof ¯�� associatedwith
its smallesteigenvalue.

This algorithmworkswell for non-singular3D surfaces
of degreetwo (i.e quadrics)when the surfaceis correctly
sampledasshown in [6]. For singularquadrics,specialcare
mustbetakenbecauseof numericalinstabilities.

3. Err or Analysisof Dual Fitting of Quadrics

Mostdatawemeasuredaresubjectto noiseandperturba-
tions.For example,calibrationerrorsandcontourdetecting
errorsare always present. Theseerrorswill propagatein
thedualfitting 3D reconstruction.Hence,it is necessaryto
analyzehow theseerrorspropagate.

3.1. Err ors on Computing TangentPlanes

The mappingfrom the 2D tangentline in the imageto
the3D tangentplaneto thesurfaceis a linearrelation:� �R²³S � (5)

where � is theplaneparametervector, � is thetangentline
parametervectorand

²
is the �c´Nµ projectionmatrix. Or-

dinaryedgedetectorswill give ustheedgepoint

�
andin-

tensitygradientdirection � , which canbeusedto compute
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tangentline description� as:� �·¶ �K � S �¹¸ (6)

Using(5), the tangentplaneis describedin termsof � and
�

as: � �z² S ¶ �K � S �º¸ (7)

Therefore,theerrorin estimatingtangentplane� is:» � � » ² S ¶ �K � S �º¸ I ²³S¼¶ » �K » � S � K � S » � ¸ (8)

In (8), the planeerrorconsistsof two terms:oneis dueto
calibrationerrors

» ²
, andtheotheris dueto measurement

errors
» �

of thepositionand
» � of thenormalof thecontour

point.

3.2. Err or Propagationin Fitting

The propagationof tangentplaneerrorsin the fitting is
rathercomplicatedto characterizesincethefitting consists
of aneigenproblem.Thetheoryof perturbationsdealswith
errorpropagationin suchtypesof eigenproblems[7]. Due
to thecomplexity of this theory, wewill justoutlinethefact
that the error propagationis relatedto a decreasingfunc-
tion of the ratiosof the othereigenvaluesto the smallest
eigenvalue. In practice,due to lack of data, the smallest
eigenvalueis closeto the othersmall eigenvalues. In such
a case,the fitting is relatively unstablewhennoiseor per-
turbationsareadded.Notice that by treatingthe fitting as
a linearfitting problemratherthananeigenproblem,more
stablefitting canbeachievedundernoiseandmissingdata
usinggradientonefitting asdescribedin [12]. In Sec.4,
we discusshow to usethegradient-oneregularizationtech-
nique, to have a morestablefitting of the dual surfacein
caseof noisyandmissingdata.

3.3. Err or Propagationfr om Dual to Primal Spaces

After thedualsurfacefit is performed,we have to com-
puteits correspondingprimal surface.As explainedin [6],
the dual surfaceof a quadricis a quadric,and the primal
surfaceof a dualquadricis alsoa quadric.More precisely,
if ½ � is the coefficient matrix of the dual quadricin ho-
mogeneouscoordinates,thecoefficientmatrix of thecorre-
spondingprimal quadricis ½ � ½¾�&¿ $ . This inverseis not
alwayswell definedwhenthedeterminantof ½¾� is numer-
ically closeto zero. Indeed,whenthe dual quadric ½¾� is
singular(i.e aconeor acylinder), theprimalquadricis also
singular. In suchcase,all theerrorsonits entriesaremagni-
fiedby thematrix inversion.Following,weuseperturbation

techniquesto quantitatively show errorpropagationassoci-
atedwith theinverseoperation.

An estimateddualquadriccoefficient matrix À½ � canbe
seenas À½ � � ½N� I » ½¾� . ½¾� is the underlyingnoiseless
dual surfacematrix which we want to estimateand

» ½ �
is the error in the dual quadricfitting. Sinceit is known
that for a pair of correspondingprimal and dual quadrics½¾�(½ �|Á ) , wededuce:� ½ � I » ½ � 
 ´ � ½ I » ½ 

�|Á )
where

Á ) is theidentitymatrix. Thus,afterexpansion:½ � ½ I » ½ � » ½ I ½ � » ½ I » ½ � ½ �|Á )
Thefirst termin theleft handsideis cancelledby theterm
in right handsideandsecondtermin theleft handsideis a
secondordersmallesttermwhichcanbeignored.Thus,we
get: ½ � » ½ I » ½ � ½ �|_
Thenusing ½ � ½¾�&¿ $ . Theerroron theprimal quadricis:» ½ � K ½ � ¿ $ » ½ � ½ � ¿ $ (9)

From(9) it is clearthatfitting errorsareamplifiedduring
the transformationfrom thedualspaceto theprimal space
when the determinantof ½N� is small. This is the main
sourceof numericalinstabilitieswe observed in practice.
In Sec.4, we discusshow to useRidge-regressionregular-
ization techniquesin computing ½N�&¿ $ in order to reduce
theerroramplificationeffect in thetransformationfrom the
dual to primal spacewithout a resultingdistortion of the
desiredfitting result.

3.4. What areSingular Cases?

In this section,we investigatethe problemof singulari-
ties for algebraicsurfacesonly. This will help us to intu-
itively explain the causesof numericalinstabilitiesof the
dual fitting algorithm. In the caseof explicit surfaces,a
singularpoint (of the first specie)is a surfacepoint where
thetangentplaneis not defined.In algebraicgeometry[1],
singularpointsareusuallydefinedaspointson thesurface
wherethe gradientof

���
is zero. For us, in the context of

dualfitting, a singularpoint is definedasthefollowing :

Definition 4 Let
��� �P�Â
w7

IR 9 / $�% / G %('('�'(% / ) : and let
�Ã7X � � �"


. Thevectorof firstderivativesof
� �H�	��


, ÄBÅVÆ �P�Â

�Ç � ���P��
��3�pÈ - � ���	��
�

, is calledtheGradientvectorof

� �
at

�
. Moreover, thematrixof secondderivativesof

� ���	��

,É ÅVÆ �P�Â
�� Ç S Ç � ���	��
��º�	È - È E � ���P��
�


, is calledtheHes-
sianmatrixof

� �
at
�

. Thecoefficientmatrixof thequadric
which approximatesthealgebraic surfacearround

�
is:½cÅ�Æ �P��
*�ËÊ � ���P�Â
 Ä S Å Æ �	��
ÄBÅ�Æ �P��
 É ÅVÆ �	��
 Ì

in homogeneouscoordinates.Thus:

4



Í �
is a singular point of

X � � �"

whentheapproximated

quadricmatrix ½cÅVÆ �	��

is not full rank.Í otherwise,

�
is a non-singularpoint of

X � � �"

Thepreviousdefinitionimpliesthatapoint

�
onthesurface

(
� �Î�	��

�|_

) wherethegradientÄBÅ�Æ �P��

is zerois singular.

Thus:

Definition 5 A singular surface, in thecontext of thedual
fitting, is an algebraic surfacewhich containsat leastone
singularpoint.

Theideaof theabovedefinitionsis thata non-singularsur-
facedoesnothaveadualsurfacethatis locally collapsedin
the dual space,i.e, the dual surfacemaintainsa full rank
matrix for eachquadric approximationat eachpoint all
alongits surface. For example,asseenpreviously, among
seconddegreeirreducible(non-factorizable)polynomials,
conesand cylinders are singularsurfacesbecausethe set
of tangentplanesalongconesandcylinderscollapsesone
dimensionin the dual space.Both dual shapeslie on hy-
perplanesin � dimensionalhomogeneousspace.They are
planarquadriccurvesin dualspace,i.e.,degree2.

From definition 4, we can seethat a locally estimated
primalsurfaceatasingularpoint is unstablebecauseof two
reasons:1) in dualspace,fitting a surfacemodelto a curve
resultsin anunstablesurfacefit; 2) computingthegradient
of this fitted surfaceat points in the vicinity of the curve
in orderto geta surfacepoint in theprimal spaceproduces
unstablegradients.Thesedifficulties canbe illustratedby
a simple example. Supposewe have a conewhosetip is
at

�p_ % _ % _�
 , theorigin of thereferencesystemin theprimal
space,i.e., 3D surface,coordinates. Sinceevery tangent
planepassesthroughthe tip (approximatelyfor real data),
the dual pointscollapseinto a scatterarounda curve in a
planewhich hasnormalvector

�p_ % _ % _ %(` 
 in homogeneous
coordinates.As shown in Fig. 2, fitting a surfacemodelto
datascatteredaroundacurveisanill-posedproblem.More-
over, a normalto thedualsurfacecorrespondsto a pointon
theprimalsurface,but for singularpoints,thisnormalis not
uniquelydefined.Thus,whenwe normalizethenormalby
dividing thenormalby it’s lastcomponentto geta3D point
of thecone,thecomputedpoint is faraway from its correct
value.

To copewith thosesingularsurfaces,thesimplestideais
to determinewhetherthe estimateddual surfacecollapses
in dimension. However, this approachrequiresa detec-
tion, and thus a threshold,on dimensioncollapse,which
is difficult to perform sincewe do not a priori know the
correctdual surface. Consequently, in the following sec-
tions, we proposea unified dual fitting 3D reconstruction
algorithmwhichdoesn’t needto distinguishbetweensingu-
lar andnon-singularcases.Themain ideato build suchan
algorithmis to addfew well chosenconstraintswhich will

Figure 2. This illustration sho ws there is am-
biguity in fitting a surface to a planar cur ve
data. The red dots are the data points whic h
lie on a plane . When using real data, these
points will lie near but off the plane . There
is then hug e variability in the rang e of sur -
faces that fit this scatter -around-the-cur ve
data equall y well. One of the possib le fitting
results, a hyperbolic surface , is sho wn. This
leads to an estimated hyperbolic surface in
the primal space , whic h is a poor representa-
tion for the true cone . It is clear that additional
inf ormation is required to get a meaningful fit.

biassingularcasesa little towardsnon-singularcaseswith-
outmodifyingthenon-singularcases.Thisapproachallows
usto drasticallystabilizethefit of singularquadrics.

4. Dual Fitting 3D reconstruction Regulariza-
tion

As describedpreviously, theproblemof unstable3D re-
constructionis dueto singularpointswherelocally thesur-
faceandits dualsurfacearesingularquadrics.For ill-posed
problemsno uniquesolutionexistsbecause,in effect, there
is notenoughinformationspecifyingit [13]. To getamean-
ingful solution,we introducedtwo kindsof regularizations
in the 3D reconstructionalgorithmto biasthe solutionto-
wardsnon-singularlocalquadrics.We first introduceareg-
ularizationschemebasedon scalingandRidgeRegression
to stabilize the transformationbetweenthe dual and pri-
mal space.Second,we proposeanotherschemebasedon
gradient-oneconstrainttodealwith theproblemof dualdata
collapsein dimension.
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4.1. Ridge-Regressionfor Dual to Primal Transfor-
mation

Closeto singularpoints, the local quadricapproximat-
ing thesurfaceis closeto singular. Its quadriccoefficient-
matrix in homogeneouscoordinateshasa badconditioning
number, andleadsto abadlyconditionedinversematrix [5].

However, if we biasthe fitted dualquadricby addinga
well chosenmatrix, we cangreatlyincreasethestability of
the primal quadriccoefficient-matrixwithout significantly
changingthedesiredshape.

To begin, every dual data point � - �Ï�¢¡ - %A£ - % > - %<d - 

which representsa tangentplaneof the primal surfaceis
normalizedto enforcenorm one of the tangentplane, i.e¡ G I £ G I > G � ` . Then,if thesetof normalized

� � - 
 %(`wagÐaÑh is closeto a plane,the primal quadricis a coneor
cylinder and thus the normal Ò to the planegivesthe tip
of theprimal coneor directionof cylinder axis in homoge-
neouscoordinates.Normal Ò canbesimplyestimatedfrom
thedataset

� � - 
 by minimizing:

Ò �|{1}�~�������� Ò S s� -�u $ � - � - S Ò �
(10)

under
y Ò y G � ` . It is a minimum valueeigenproblem.

Notice thatafter the tip Ò is estimated,the primal coordi-
natesystemorigin canbe moved to the tip. Then,tangent
planes

� � - 
 arerecomputedin thetranslatedcoordinatesys-
tem. This helpsto reducenumericalinstabilitiesby center-
ing the datasetbeforefitting. Beforefitting, whiteningof
matrix

C s-�u $ � - � - S can also be performedwith resulting
advantages.

Let ½¾� denotethedualquadricmatrixobtainedafterfit-
ting. To copeuniformly with bothsingularandnon-singular
cases,ratherthanusing ½ � ½¾� ¿ $ asprimal quadricma-
trix, we use: ½ �ÔÓ ½ � I�� ÒÕÒ SVÖ ¿ $ (11)

where � controlstheamountof regularization
Intuitively, � Ò×Ò S

in theright handsideof (11)pulls the
overall primal surface,i.e., the 3D objectsurface,towards
the tip point. Equivalently, for singularcases,asthe � in-
creases,theprimalquadricdescribedby (11)betterapprox-
imatesthetruesingularquadric.For thenon-singularcase,
the effect of � Ò×Ò S

on ½ is small if � is small compared
to ½¾� . This regularizationturnsout to be appropriatefor
handlingcylindersaswell.

4.2. Gradient-One Dual Fitting

Sincefitting a curve with a surfacemodel in the dual
spaceis an ill-posed problem, extra information can be
addedto force the fitting to get the desirableresult. For
example,in Fig. 2, if we know Ò the normalof the plane

wherethedualsurfaceis included,thenthehyperboloidis
moredesirablethanthe ellipsoid becausethe ellipsoid has
pointsfaraway from theplaneÒ .

To force the dual fit to be close to plane Ò in the
neighborhoodof the data points, we put soft constrainty Ç � K Ò y G �Ø_

into the fitting algorithm, where Ò is
thenormalof theplanegoingthroughthedataestimatedas
in theprevioussection.Wecanrewrite theaboveconstrains
into adifferentialform which is moreconvenientto beused
in thefitting._Ð� y Ç � K Ò y G �|Q S Ç U Ç U S Q K×M Ò3' Ç U S Q I ` (12)

When constraint(12) is introducedinto the fitting mini-
mization,weget:Q �|{ }�~¼���r�¤Y�Q S � ¯ I � C s-�u $ Ç U - Ç U S- 
xQK8M � Q S C s-�u $ � ÒÙ' Ç 
VU - f (13)

From definition 4, locally at a singularpoint, pointson
thedualsurfacelie in aplanarcurveinsteadof acurvedsur-
face,andthustheconstraintbiasesthefit to acloseto planar
quadric. On the contrary, when the point is non-singular,
this constraintdoesnot changetheresultingfit much.

With theuseof thegradient-oneconstraint,thesolution
of the regularizedfitting problem, i.e of (13), consistsin
solvingthelinearsystem:QR� ¦ s� -�u $ U - UÐS- I � Ç U - Ç UwS- § ¿ $�Ú s� -ru $ � ÒÙ' Ç 
VU -.Û

(14)
We call the above fitting algorithm gradient-onedual

fitting becausethe constraintin (13) is closeto gradient-
one constraintintroducedin [12] which was usedto in-
creasedirectalgebraiccurvefitting stabilityin primalspace.
In [12], thegradient-oneconstraintusedis

� Ò S Ç � K ` 
 M I�PÜ S Ç � 
 M �Ý_
which also implies that the gradient of�

locally agreeswith the data normal at regular points.
Therefore,we have appliedwith successto dualfitting the
gradient-oneconstraintusedby [12]. Here,weuseonly the
normalterm of the gradient-oneconstraint.But a basisof
the tangentplaneto thedualcurve at every � - canbealso
easilyobtainedusinginformationaboutpoint

� - on theim-
agesasexplainedin [6].

Themainadvantageof gradient-onedualfitting overpre-
vious eigendual fitting in [6] is that errorspropagatein a
betterway. Indeed,for gradient-onedualfits, theerroranal-
ysis canbe performedmoreeasily, sincethe minimization
leadsto a linearsystem,insteadof aneigenproblem.

5. Experiment Results

5.1. Syntheticdata experiments

We conductedexperimentson syntheticdata to show
how the gradientoneweightingfactor � effectsthe fitting
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results. In the following two experimentswe set ground
truth surfaceswhich we wantto reconstructastheellipsoid/ G I $Þ ? G I $G @ G � ` andthecone/ GLK $Þ ? G I $G @ G �R_

. The
camerais about1500millimetersaway from thecentersof
theseobjects.Thenwe move thecamerato 5 differentpo-
sitionsto computethe contoursin 5 differentimages.The
baselinebetweenthe lastcameraandthefirst cameraposi-
tionsis about500millimeters.Theexternalparametersare
known perfectly. Theusedinternalparametersaretheones
of a Nikon 5000cameraat manualfocus

� ��ß 5¢`�h¾h . Af-
ter thosecontourpointsweregeneratedusinggroundtruth
surfaceparametersandcamerainternalandexternalparam-
eters,we usedthegradient-onealgorithm(see(13)) to esti-
matetheprimalsurfaceunderdifferent � .

The resultsof both experimentsareshown in Fig. 3(a)
andFig. 3(b). Figuresin Fig. 3 show error changeswhen
gradient-oneweightingfactor � increases.In Fig. 3(a),we
canseethat thecomputedellipsoid is biasedaway from its
true shapeas � increases.When �·aà` _ ¿ Þ the bias of
thereconstructedsurfaceis lessthan1%, on its threeaxes.
Thebottomfigureof Fig. 3(b) shows thatthereconstructed
shapeis closerto aconeastheweightingfactor � increases,
but the bias on the reconstructedshapeincreasesas well.
The trade-off betweenincreaseof the stability andbiasof
thereconstructionseemscorrectfor a � around ` _ ¿ Þ . This
shows that thealgorithmwe proposedin theSec.4 is valid
for both non-singularandsingularsurfaces. Therefore,it
canbe called“unified dual fitting 3D reconstructionalgo-
rithm”.

5.2. On the Choiceof the � and �
Theweightingfactor, � , in (11) is setby:� � d(gpá � � ½ ÞAÞ 
 # ���r�-�u $<â G â ã Y ½ -¢- f

whered�gpá � � / 
 is thesignumfunctionwhichisusedtoavoid
changingthe fitted shapefrom a hyperbolicsurface to a
parabolicsurface. # is alwaysset to M ä which guarantee
a reconstructedshapebiaswithin M ä andimprovesthesta-
bility of singularshapesgreatly.

Fig. 4 shows how the shapechangeswhen # increases.
The tip of Fig. 4(a) is muchsharperthanthatof Fig. 4(b).
This confirms the discussionin Sec.4. As # increases,
the tip of the reconstructedshapewill approachthe true
value,becomingsharperandsharper. But for non-singular
quadrics,reconstructedshapedivergesaway from the true
shape.Wenoticedthatfor thefunnel,crosssectionis nearly
a circle. But the ratio of the two axesmovesaway from `
as � increases.From the experiment,we alsocanseethat
when �æå ` _ ¿ G , theratiochangesa little. This justifiedour
setting� to thefixedvalue ` _ ¿ Þ in thefollowing realexper-
iments. Moreover, the gradient-oneweightingfactoris set
to � � ` _ ¿ Þ in (13),asexplainedin theprevioussection.

(a)

(b)

Figure 4. Diff erent � effects on the recon-
structed shape for a cone . In (a) � is set to` _1_ ä of the shor test axis, and in (b) � is set
to M ä of the shor test axis.
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Figure 3. � effects on the dual gradient-one reconstruction for a non-singular and a singular quadrics.
In column (a), three cur ves displa y the � effect on ellipsoid axis lengths, a, b, c, respectivel y. x-axis isç�è ~H� � 
 and y-axis is the relative error. In column (b), the reconstructed primal surface is a hyperboloid
having axis @ and elliptic cross-section; the three cur ves displa y the � effect on cross-section ellipse
axes lengths at @ � ` , and bottom, on the distance of the hyperboloid to the true tip position of the
cone .

5.3. 3D ReconstructionsBasedon Real Data

Weperformedrealexperimentsto testthe3D reconstruc-
tion dual algorithm proposedin Sec.4. In theseexperi-
ments,differentobjectsareusedwith a Nikon 5000digi-
tal camera.Thecamerais posedat about1200millimeters
away from the centerof the object. Then we moved the
camerato differentpositionsto take images.Contoursare
extractedfrom imagesusingtheCanny edgedetector. The
baselinebetweenthe last cameraand the first camerasis
about700millimeters. We useZhang’s cameracalibration
algorithm[14] to calibratecamerainternalandexternalpa-
rameters.

Fig. 5 shows thesetupof thegradientonefitting exper-
iment on a singularshape(a cone)andthe 3D reconstruc-
tion. In Fig.5(a),thefunnelwhichwewantto reconstructis
placedright undera planarcalibrationboardwhich is used
to calibratecameraparameters.We seefrom theimagethat
theshapeis closeenoughto acone.

Fig. 6 shows a cylindrical box for experimentand the
reconstruction.Althougha cylinder is a singularshape,the
proposeddualfitting algorithmcanreconstructit well.

Fig. 7(b) illustratesa 4th degreealgebraicsurfaceesti-
matedfrom occludingcontoursin 7 views of thesculpture
shown in Fig. 7(a).3D primalspaceis partitionedinto large
cubes,a dualquadricsurfaceis estimatedin eachcubeus-
ing thealgorithmin thispaper, thenpointsaresampledfrom
the primal surfacefor eachof the estimateddual quadric

surfaces,anda single4th degreealgebraicsurfaceis fit to
thesesampledpoints. See[6] for a discussionof this data
andreconstructionbut usingthe original dual quadricsur-
faceestimatorin [6] ratherthanthe improvedquadricsur-
faceestimatorin this presentpaper.

6. Conclusionand Outlooking

We proposeda new stablelow-computational-costlin-
earfitting algorithmfor 3D surfacereconstructionfrom oc-
cluding contours.The analysisof the causesof troublein
dual fitting allows us to proposean algorithmwhich han-
dlesshapeswith andwithoutsingularpartsin aunifiedway
withoutdistinguishingtheexistingsingularitycaseor cases.
For quadricsurface,singularsurfacesaretheconeandthe
cylinder. We illustratethepracticaleffectivenessof theap-
proachon real andsyntheticdata. Thesearemajor exten-
sionsof thealgorithmsin [6].
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(a)

(b)

Figure 5. (a) one of 8 images used for fun-
nel reconstruction. (b) the 3D model com-
puted using dual fitting 3D reconstruction al-
gorithm.
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(a)

(b)

Figure 7. (a) the sculpture used for recon-
struction. (b) the �1��  degree pol ynomial 3D
model computed using the dual fitting 3D re-
construction algorithm. The measured data
was that used by author s in [6].
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