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Abstract. Tuning hyper-parameters is a necessary step to improve learn-
ing algorithm performances. For Support Vector Machine classifiers, ad-
justing kernel parameters increases drastically the recognition accuracy.
Basically, cross-validation is performed by sweeping exhaustively the pa-
rameter space. The complexity of such grid search is exponential with
respect to the number of optimized parameters. Recently, a gradient
descent approach has been introduced in [1] which reduces drastically
the search steps of the optimal parameters. In this paper, we define the
LCCP (Log Convex Concave Procedure) optimization scheme derived
from the CCCP (Convex ConCave Procedure) for optimizing kernel pa-
rameters by minimizing the radius-margin bound. To apply the LCCP,
we prove, for a particular choice of kernel, that the radius is log convex
and the margin is log concave. The LCCP is more efficient than gradient
descent technique since it insures that the radius margin bound decreases
monotonically and converges to a local minimum without searching the
size step. Experimentations with standard data sets are provided and
discussed.

1 Introduction

Support Vector Machine (SVM) [2] is one of the most successful algorithms of
machine learning. SVM is flexible since various kernels can be plugged for dif-
ferent data representations. Besides RBF and Polynomial kernels only few other
kernels have been used. An interesting and important issue for kernel design con-
sists of assigning, for instance, different scales for each feature component. This
is refereed as adaptive metrics [3]. On the other hand, the classical method for
tuning the learning algorithm parameters is to select parameters that minimize
an estimation or a bound on the generalization error such as cross validation
or the radius margin [2]. The latter has been shown to be a simple and predic-
tive enough “estimator” of the generalization error. In this paper, we define the
LCCP for optimizing kernel parameters by minimizing the radius margin bound.
The LCCP is the direct application of the CCCP [4] to our optimization case.

2 The Log Convex Concave Procedure (LCCP)

The convex concave procedure (CCCP) has been recently introduced [4] for opti-
mizing a function that can be written as a sum of convex and concave functions.



The advantage of the CCCP compared with gradient descent techniques is that
it insures the monotonic decrease of the objective function without searching
the size step. In the following, we summarize the main results of the CCCP
optimization framework.

Theorem 1. [4]

· Let E(θ) be an objective function with bounded Hessian ∂2E(θ)
∂θ2 . Thus, we

can always decompose it into the sum of convex and concave functions.
· We consider the minimization problem of a function E(θ) of form E(θ) =

Evex(θ) + Ecave(θ) where Evex is convex and Ecave is concave. Then the
discrete iterative CCCP algorithm: θp → θp+1 given by ∇Evex(θp+1) =
−∇Ecave(θp) decreases monotonically the objective function E(θ) and hence
converges to a minimum or a saddle point of E(θ).

· The update rule for θp+1 can be formulated as a minimization of a convex
function θp+1 = argminθ Ep+1(θ) where the convex function Ep+1(θ) is
defined by

Ep+1(θ) = Evex(θ) + θ>∇Ecave(θp).

We define the LCCP by applying the CCCP to the case of the minimization of
a positive function J(θ) that can be written as a product of log convex and log
concave functions J(θ) = Jlvex(θ)Jlcave(θ) where Jlvex(θ) > 0 is log convex and
Jlcave(θ) > 0 is log concave. In log(J(θ)) = log(Jlvex(θ)) + log(Jlcave(θ)), we
set E(θ) = log(J(θ)), Evex(θ) = log(Jlvex(θ)) and Ecave(θ) = log(Jlcave(θ)).
Hence, we obtain E(θ) = Evex(θ) + Ecave(θ) where Evex(θ) is convex and
Ecave(θ) is concave. Moreover, the minima location of E(θ) and J(θ) are the
same since the log function is strictly increasing.

3 Parameters selection procedure

The optimization of SVM parameters can be performed by minimizing an esti-
mator of the generalization error. The simplest strategy consists in performing an
exhaustive search over all possible parameters. When the number of parameters
is high, such a technique becomes intractable. In [1], gradient descent framework
is introduced for kernel parameter’s optimization. Powerful results on the dif-
ferentiation of various error estimators and generalization bounds are provided.
Based of this work, we apply the LCCP framework for optimizing multiple ker-
nel parameters by minimizing the radius margin bound [2]. Indeed, for good
choice of kernels, the optimizing problem can be expressed under the condition
of LCCP, in particular for the multi-parameters L1-distance kernel.

3.1 Distance kernel

In [1], tests with multiple parameters for polynomial and RBF kernels have been
successfully carried without over-fitting. From the L1-distance kernel:

KL1
(x, x′) = −

n
∑

k=1

|xk − x′k|, (1)



where x and x′ are in R
n with components xk and x′k , we propose its following

multiple parameters extension:

KL1,θ(x, x′) = −

n
∑

k=1

|xk − x′k|

θk
, (2)

where θ is in R
+n

with components θk. This kernel is conditionally positive
definite, see [5]. We prove that it is possible to use the LCCP for minimizing
radius-margin bound R2‖w‖2, with respect to θ. To do so, we prove the log
convexity of the radius R2 and the log concavity of ‖w‖2. Another proof may
be used for another kernel. More precisely, for R2, we will prove that it can be
written as a sum of log convex functions. For ‖w‖2, it is sufficient to prove that
it is concave since the concavity implies the log concavity.

3.2 The log convexity of R2

First, we recall from [6] a useful result on convex functions that we need in the
proof of the log convexity of the radius R2.

Lemma 1. If for each y ∈ A, f(x, y) is convex in x, then the function g,
defined as g(x) = maxy∈A f(x, y) is convex in x.

This result can be easily extended to the case of log convex functions. The radius
R2 can be written for the kernel (2) as the following:

R2(θ) = max
β∈B

JR2(β, θ), (3)

where B = {βi ≥ 0,
∑`

i=1 βi = 1} and JR2 is the following function:

JR2(β, θ) = −
∑̀

i=1

βi

n
∑

k=1

Fak
ii
(θ) +

∑̀

i,j=1

βiβj

n
∑

k=1

Fak
ij

(θ), (4)

with Fak
ij

(θ) = fak
ij

(θk) =
ak

ij

θk and ak
ij = |xk

i − xk
j |. Since ak

ii = 0, the first sum

in JR2 is zero. Next, we prove that F is log convex. To do so, it is necessary and
sufficient [6] to prove that ∇2F (θ)F (θ) − ∇F (θ)∇F (θ)> is a positive definite
matrix. By computing the gradient ∇F and the Hessian ∇2F , it turns out that
the obtained matrix is diagonal. Thus the necessary and sufficient condition for
the log convexity becomes f ′′

ak
ij

(θk)fak
ij

(θk) − f ′2
ak

ij

(θk) ≥ 0. We have:

fa(t) =
a

t
, f ′

a(t) = −
a

t2
, f ′′

a (t) =
2a

t3
, f ′′

a (t)fa(t) − f ′
a

2
(t) =

a2

t4
≥ 0.

So JR2 is log convex with respect to θ, as a sum of log convex functions [6].
Lemma 1 implies that R2 is log convex.



3.3 Log concavity of ‖w‖2

A similar result to Lemma 1, for the concave case, can be derived [6]:

Lemma 2. Assume that A is a convex set, if f(x, y) is concave in (x, y), then
the function g, defined by g(x) = maxy∈A f(x, y) is concave in x.

We also need two extra lemmas, which are proved with details in [5]:

Lemma 3. We define the function f by

f(a, t) =
1

t
a>K a, a ∈ R

`, t ∈ R+, K ∈ R
`×`.

If K is a positive definite matrix then f is convex in (a, t).

Lemma 4. We define the function g for t ∈ R
n, a ∈ R

`

g(a, t) =

n
∑

k=1

fk(a, tk).

If each fk is convex in (a, tk), then g is convex in (a, t).

The expression of ‖w‖2 is the following:

‖w‖2(θ) = max
α∈Λ

J‖w‖2(α, θ),

where Λ = {αi ≥ 0,
∑`

i=1 αiyi = 0} and

J‖w‖2(α, θ) = 2
∑̀

i=1

αi −
∑̀

i,j=1

αiαjyiyjKθ(xi, xj).

It is obvious that Λ is a convex set. The first term in J‖w‖2 is linear with respect
to α, thus it does not affect the convex or concave nature of J‖w‖2 . We thus
only focus on:

J ′
‖w‖2(α, θ) = −

n
∑

k=1

1

θk

∑̀

i,j=1

αiαjyiyjKk(xi, xj)

where Kk(xi, xj) = −|xk
i − xk

j | is conditionally positive definite. We introduce

the kernel K̃k defined by K̃k(x, x′) = Kk(x, x′) − Kk(x, x0) − Kk(x′, x0) +
Kk(x0, x0) where x0 is chosen arbitrary. It is known that K̃k is positive definite
and that it can be substituted to Kk in the dual SVM problem, see [5]. Similarly,

we can substitute Kk by K̃k in J ′
‖w‖2 according to the constraint

∑`

i=1 αiyi = 0

and rewrite it as J ′
‖w‖2(α, θ) = −

∑n

k=1
1
θk αy

>K̃k αy = −
∑n

k=1 fk(α, θk),

where K̃k is the Gram matrix of K̃k, αy denotes the vector [α1y1 . . . α`y`]
>,

and fk(α, θk) = 1
θk α>K̃y,k α with

[

K̃y,k

]ij

= yiyj

[

K̃k

]ij

. We have that K̃y,p



is positive definite. Therefore, lemma 3 implies that fk is convex in (α, θk) and
lemma 4 implies that the sum over fk is convex in (α, θ). Therefore, we have
the concavity of J ′

‖w‖2 in (α, θ) and lemma 2 implies the concavity of ‖w‖2

with respect to θ. The log concavity is always obtained when the concavity of
positive functions is insured [6]. The conditions of LCCP are all fulfilled. We can
thus apply it for the optimization of the L1-distance kernel parameters.

4 Experiments

4

6

8

10

12

x 10
−3

4

6

8

10

12

x 10
−3

8

8.5

9

9.5

10

10.5

θ
1

θ
2

ln
(R

2 )

4
5

6
7

8
9

10
11

x 10
−3

4

6

8

10

12

x 10
−3

−10

−9.5

−9

−8.5

−8

−7.5

θ
1

θ
2

ln
(|

|w
||2 )

4
5

6
7

8
9

10
11

x 10
−3

4

5
6

7
8

9
10

11

x 10
−30.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

θ
2

θ
1

ln
(R

2  ⋅ 
||w

||2 )

Fig. 1. The left, middle and right figures plot respectively log(R2), log(‖w‖2) and
log(R2‖w‖2) with respect to the L1-distance kernel parameters (θ1, θ2) on banana
dataset which is a set of 2D points [7].

Fig. 1 shows the variation of log(R2), log(‖w‖2) and log(R2‖w‖2) with re-
spect to θ1 and θ2 for the kernel (2). It illustrates the log convexity of R2 and
the log concavity of ‖w2‖.

Thyroid Titanic Heart Breast-cancer

KL1
(1) 5.77% 22.68% 20.65% 28.97%

KL2
(5) 11.21% 22.56% 18.23% 29.77%

KL1,θ (2) 6.20% 22.08% 17.34% 27.12%

n 5 3 13 9

Table 1. Test error’s comparison of the single parameter L1 distance kernel (1), L2

distance kernel (5) and L1 distance kernel with multiple parameters. n denotes the
number of parameters for multi-parameter’s kernel. LCCP is used for optimizing the
radius margin bound.

In order to evaluate the performance of the LCCP for optimizing multiple pa-
rameters, we performed experiments on datasets obtained from [7]. We compare
the L1-distance kernel without parameters (1), the L2-distance kernel:

KL2
(x, x′) = −

n
∑

k=1

(xk − x′k)2, (5)



and the L1-distance kernel with multiple parameters (2). Initial starting point
is set to 1 for all θi, as in [1]. The stopping criterion is |log(Ep+1(θp+1)) −
log(Ep(θp))| < ε. The data sets contain 100 realizations of training and test ex-
amples. For each realization, we optimize the kernel parameters on the training
sample using the LCCP. The obtained parameters are used to estimate the gener-
alization error on the test sample by a 5-fold cross-validation. Tab. 1 summarizes
average test errors for different data sets. The L2-distance kernel is equivalent to
the linear kernel when used within SVM. We observe that the L1-distance ker-
nel performs better or similarly than L2-distance kernel except on heart dataset.
Tab. 1 shows that the use of multiple parameters in L1-distance kernel allows
us most of the time to decrease the test error, despite the weightening of each
dataset. This shows clearly the interest of the introduction of multiple parame-
ters in kernels.

5 Conclusion

In this paper, we propose an original way for optimizing of kernel multiple pa-
rameters by minimizing the radius margin bound, we named LCCP. The LCCP is
derived directly from CCCP optimizing framework. The LCCP approach is more
efficient than the gradient descent technique since it converges to a local mini-
mum without searching the size step. We prove that, for the multi-parameters
L1-distance kernel, the radius margin fulfills the conditions for application of the
LCCP. Comparison on standard data set leads to improved recognition perfor-
mance compared to single parameter L1-distance kernel. The multi-parameters
L1-distance kernel is only one example of kernel which fulfills the conditions for
application of the LCCP, but other exists. The formal definition of the set of all
kernels that fulfills these conditions is the subject of our future researches.
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