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Abstract

One source of difficulties when processing outdoor im-

ages is the presence of haze, fog or smoke which fades the

colors and reduces the contrast of the observed objects.

We introduce a novel algorithm and variants for visibility

restoration from a single image. The main advantage of

the proposed algorithm compared with other is its speed:

its complexity is a linear function of the number of image

pixels only. This speed allows visibility restoration to be

applied for the first time within real-time processing appli-

cations such as sign, lane-marking and obstacle detection

from an in-vehicle camera. Another advantage is the pos-

sibility to handle both color images or gray level images

since the ambiguity between the presence of fog and the ob-

jects with low color saturation is solved by assuming only

small objects can have colors with low saturation. The al-

gorithm is controlled only by a few parameters and con-

sists in: atmospheric veil inference, image restoration and

smoothing, tone mapping. A comparative study and quanti-

tative evaluation is proposed with a few other state of the art

algorithms which demonstrates that similar or better qual-

ity results are obtained. Finally, an application is presented

to lane-marking extraction in gray level images, illustrating

the interest of the approach.

1. Introduction

In surveillance, intelligent vehicles, and remote sensing

systems, the image appearance is subject to weather condi-

tions and thus affected by haze, fog and smoke. On a gray

level image, the model of the effect of the fog is established

by Koschmieder as the following relationship [4]:

L(x, y) = L0(x, y)e−kd(x,y) + Ls(1 − e−kd(x,y)) (1)

where L(x, y) is the apparent luminance at pixel (x, y),
d(x, y) is the distance of the corresponding object with in-

trinsic luminance L0(x, y), Ls is the luminance of the sky

and k denotes the extinction coefficient of the atmosphere.

This model is directly extended to a color image by apply-

ing the same model on each RGB component, assuming a

camera with a linear response. The first effect of the fog

is an exponential decay e−kd(x,y) of the intrinsic luminance

L0(x, y) and of the intrinsic colors. Thus, the contrast of

the object is reduced and thus its visibility in the scene. The

second effect is the addition of a white atmospheric veil

Ls(1 − e−kd(x,y)) which is an increasing function of the

object distance d(x, y).

The presence of fog in an image is generally a source of

difficulties when processing by an algorithm designed for

clear weather images. Instead of extending each of algo-

rithm from clear to foggy weather, it seems more adequate

to perform on each input image a visibility restoration pre-

processing. This pre-processing can be applied only when

fog is detected, see for example [4], to save even more com-

putational time. Visibility restoration is an ill-posed prob-

lem. Indeed, the atmospheric veil being a function of the

objects depth, a perfect visibility restoration requests the

estimation of the true colors of the objects (L0(x, y)) and
of the fog properties (k and Ls) as well as the depth-map

d(x, y) of the scene.

As a consequence, approaches based on the use of sev-

eral images of the scene were proposed: using images at dif-

ferent times [8] or using images with different polarizing fil-

ters [11]. This kind of methods are very constraining for the

acquisition and cannot be used on existing image databases.

An alternative of using several images is to use an approxi-

mate depth-map of the image scene, or the exact depth-map

when available, as proposed in [7, 2, 6]. These methods are

more flexible but they are application dependent or require

interactions with an expert. For more detailed review on

visibility restoration algorithms in the computer vision and

computer graphics fields, the reader is referred to [1, 6].

Very recently and for the first time in [1, 12, 5], three

approaches were proposed which work from a single image

without using any other extra source of information. In [1],

the proposed algorithm is deeply based on the color and thus

cannot deal with a gray level image. The algorithm is com-

putationally intensive. In comparison, the algorithm in [12]



does not always achieve equally good results on very satu-

rated scenes, but it has the great advantage of being more

generic and thus of easier application on many kinds of im-

ages. In particular, it works on color images as well as on

gray level images. The algorithm in [5] also works on gray-

level and color images. However, the disadvantage of these

last two algorithms is a processing time of 5 to 7 minutes

and of 10 to 20 seconds on a 600×400 image, respectively.

We here by propose a novel algorithm for visibility

restoration based on a filtering approach. It is much faster

compared to [1, 12, 5] since its complexity is only a linear

function of the number of input image pixels, and it is able

to achieve equally and sometime even better results to both

color and gray level images. In section 2, our approach and

the steps of the fast visibility restoration algorithm are de-

tailed and a variant with a smoothing algorithm preserving

edges and corners with obtuse angles is introduced. In sec-

tion 3 is provided a comparison with algorithms [1, 12, 6, 5]

based on a quantitative evaluation on four color images, il-

lustrating the pros and cons of the proposed algorithm. Fi-

nally, in section 4, the interest of the visibility restoration for

intelligent vehicles and in particular lane-marking detection

is detailed.

2. Visibility Restoration Algorithm

When no depth information is available, as noticed

in [12], it is not possible in Koschmieder’s law (1) to sep-

arate between the contribution of the extinction coefficient

of the atmosphere k and the scene distance map d. As a

consequence, introducing the intensity of the atmospheric

veil V (x, y) = Is(1 − e−kd(x,y)), Koschmieder’s law can

be rewritten in gray level and in colors as:

I(x, y) = R(x, y)(1 −
V (x, y)

Is

) + V (x, y) (2)

where I(x, y) is the observed image intensity (gray level

or RGB) at pixel (x, y) and R(x, y) is the image intensity

without fog. As a consequence, from now on, instead of

seeking to infer the depth-map d(x, y), we will infer equiv-
alently the atmospheric veil V (x, y). The visibility restora-

tion algorithm can thus be decomposed into several steps:

estimation of Is, inference of V (x, y) from I(x, y), estima-

tion of R(x, y) by inversing (2), smoothing to handle noise

amplification and final tone mapping.

2.1. White Balance

We assume that the white balance is performed prior to

the visibility restoration algorithm. When the white balance

is correctly performed, the fog being pure white, this im-

plies that Is can be set to (1, 1, 1), also assuming that the

input image I(x, y) is normalized between 0 and 1. Thanks
to the presence of fog in the image, most of time the white

x
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Figure 1. The amount of white color W is the black continuous

curve and its local average is the black dash line. The result V

estimated by optimizing (3) for a large value of λ is shown as red

dot-dash. The result V obtained with the proposed approach is

shown as green dash.

balance can be performed simply by biasing the image av-

erage color towards pure white. For difficult images where

light color changes along the image, such as in Fig. 8, it is

better to perform a local white balance by biasing towards

local image averages.

2.2. Atmospheric Veil Inference

The first step of image restoration consists in inferring

the atmospheric veil V (x, y). Due to its physical properties,
the atmospheric veil is subject to two constraints when the

observed image is known: it is positive 0 ≤ V (x, y) and

being pure white, for each pixel, it can not be higher than

the min of the components of I(x, y). We thus compute

the image W (x, y) = min(I(x, y)) defined as the image

of the minimal component of I(x, y) for each pixel (gray

level or RGB). W is the image of the whiteness within the

observed image I . For a gray level image, we obviously

have W = I . The second constraint can thus be written as

V (x, y) ≤ W (x, y).
Following [12], visibility restoration is an ill-posed prob-

lem and a regularized solution can be obtained by maximiz-

ing the contrast of the resulting image assuming that the

depth-map must be smooth except along edges with large

depth jumps. The problem can thus be reformulated as max-

imizing V (x, y) assuming than V (x, y) is smooth most of

the time, and formalized as the following optimization prob-

lem:

argmax
V

∫
(x,y)

V (x, y) − λφ(‖∇V (x, y)‖2) (3)

with constraints 0 ≤ V (x, y) ≤ W (x, y). Parameter λ

controls the smoothness of the solution, φ is an increasing

concave function allowing large jumps.

The optimization of (3) being too computationally inten-

sive, we search for another way to deal with the visibility

restoration problem allowing real time processing. A pos-

sibility consists in performing a spatial erosion. Notice that



Figure 2. From left to right, the original image, the atmospheric veil V (x, y) and the restoration obtained by enforcing complete smooth-

ness, the atmospheric veil V (x, y) and the restoration obtained by enforcing smoothness most of the time (used parameters in both cases

p = 0.95, sv = 41 and si = 19).

Figure 3. From left to right, the original image, the image and a zoom after restoration using the median filter, the image and a zoom using

the filter we named median of median along lines (used parameters in both cases p = 0.95, sv = 61 and si = 1).

the first step of [5] is close to an erosion on W since it con-

sists in an erosion on each color component followed by

a min over the components. We also experiment with the

erosion and we found that it suffers of halo. This is why a

refinement using matting is requested in [5]. The problem

can be seen as a filtering problem. We thus search for other

operators that can be used with advantages in particular to

improve robustness of the result.

The optimization of (3) consists in searching for a func-

tion V (x, y) of maximum volume, smooth most of the time

and lower than W (x, y). In Fig. 1, the obtained V (x) is

shown as a red dot-dash curve for a large value of λ, the

black continuous curve being W (x). Due to the constraint

V (x) ≤ W (x), the deep valley of W (x) in the middle of

the figure forces V (x) to relatively small values around this

position. These small values may be justified when the mid-

dle of the scene is at a similar distance. In such a case, the

presence of this valley indicates that the scene contains ob-

jects with colors weakly saturated. On the contrary, this

valley may be due to a dark small and closer object such

as a bird. In such a case, this valley should be considered

as outliers in estimating locally V , and thus a curve such as

the green one in Fig. 1 must be preferred, to avoid keeping a

certain amount of fog around outliers. To tackle this robust-

ness problem, we propose to infer V (x, y) as a percentage
of the difference between the local average of W (x, y) and
of the local standard deviation of W (x, y).

It is now important to stress that the introduction of pos-

sible large jumps is necessary to restore images such as

the one in Fig. 2. This figure shows the resulting differ-

ence when enforcing complete smoothness or smoothness

most of the time of the atmospheric veil. Indeed, if the

obtained atmospheric veil V (x, y) does not seem so dif-

ferent, an incorrect halo appears when complete smooth-

ness is enforced. This implies that the local average of

W (x, y) must be performed using a smoothing algorithm

which preserves large jumps along edges. Fig. 1 shows in

black dot line the resulting local average. To perform an

edge preserving smoothing, robust bilateral filters can be

used or faster the median filter which is a particular bi-

lateral filter. The local average of W is thus computed

as A(x, y) = mediansv
(W )(x, y) where sv is the size

of the square or disc window used in the median filter.

Then to take into account that areas with contrasted tex-

ture are probably not foggy, the local standard deviation

of W (x, y) is subtracted to A(x, y). Again, to be robust

to outliers, this standard deviation must be estimated in a

robust way, for instance by applying the median filter on

|W (x, y) − A(x, y)|. The third and last step consists in

multiplying B(x, y) = A − mediansv
(|W − A|) by factor

p in ]0, 1[ to control the strength of the visibility restoration.
The values of pB(x, y) do not necessarily respect the con-

straints on V and thus are thresholded (to obtain the final

green dash curve of Fig. 1). In summary, the atmospheric

veil V is inferred as:

V (x, y) = max(min(pB(x, y),W (x, y)), 0)
with B(x, y) = A(x, y) − mediansv

(|W − A|)(x, y)
and A(x, y) = mediansv

(W )(x, y)
(4)

Fig. 2 shows an example of inferred atmospheric veil us-

ing (4) with p = 0.95 and sv = 41.

2.3. Corner Preserving Smoothing

To compute A, we previously used the classical median

filter which preserves edges but not corners. This may

induce artifacts for large values of sv on very structured



Figure 4. From left to right, the original image, the results obtained with p = 0.7 and sv = 61, p = 0.90 and sv = 61, p = 0.98 and

sv = 61, p = 0.90 and sv = 21 (si = 1). Notice how the restoration is too strong with p = 0.98 and too light with p = 0.7. It seems

better with p = 0.9. On the right, white markings close to the vehicle are erased due to a too small value of sv = 21 compared to the

lane-marking size. sv = 61 leads to better results.

Figure 5. From left to right, the original image, the image and a zoom after restoration without and with smoothing adapted to contrast

magnification (sv = 61, p = 0.95 and si = 19). Notice how jpeg artifacts are softened.

scenes such as cities, buildings. We thus now introduce

an original filter we named Median of Median Along Lines

which is able to preserve edges as well as corners with ob-

tuse angle. Assuming an a priori set of nv centered line

segments Si, 1 ≤ i ≤ nv of uniformly sampled orientations

is given, this filter consists in the same local processing at

each pixel. Each segment is of length sv . For each pixel and

for each segment Si centered on the current pixel, the me-

dian value of the intensities along Si is computed and saved

as mi. When the mi are collected for the current pixel and

whole centered segments, the filtered image pixel is com-

puted as the median value of the mi with 1 ≤ i ≤ nv .

When the current pixel is close to an edge, all mi are

close to the average intensity I of the region where the cur-

rent pixel is. As a consequence, the proposed filter pre-

serves edges. When the current pixel is close to a corner

with angle θ, the percentage of values mi not close to I

equals 1 − |θ|
π
. As a consequence, for obtuse angle only,

this percentage is higher than 50% and thus the median of

the mi is close to I . This implies than the median of median

along lines filter preserves edges as well as corners with an

obtuse angle. Due to this last property, median of median

along lines filter can be used with advantages in many other

image processing applications.

Fig. 3 shows the interest of using the median of median

along lines filter (nv = 5) compared to the classical median

filter on a image, see in particular around the tree trunc.

With this last filter, the proposed restoration algorithm is not

real-time, but can be still quite fast when using a reduced set

of segments Si.

2.4. Image Visibility Restoration

Now that the atmospheric veil V has been inferred, the

restoration of the original image colors can be performed by

solving (2) with respect to R:

R(x, y) =
I(x, y) − V (x, y)

1 − V (x,y)
Is

(5)

In (4), the two parameters p and sv are used to control the

aspect of the visibility restoration. The value of p controls

the strength of the restoration, and is set usually between

90 and 95%. This means that 90% or 95% of the amount

of atmospheric veil is removed. This parameter is useful to

compromise between a) highly restored visibility (when p

is closed to 1) where colors may appear over saturated and

too dark, and b) less restored visibility where colors are less

saturated and thus clearer, as illustrated in Fig. 4 on a gray

level image. The parameter sv specifies the larger size of

the assumed white objects. Any close to white object with a

size larger than sv is assumed to be white because of the fog.

On the contrary, a white object with a size smaller than sv

will be assumed intrinsically as white. This is illustrated in

Fig. 4 with white lane-markings in the bottom of the image.

2.5. Smoothing Adapted to Contrast Magnification

During the image visibility restoration, the more the at-

mospheric veil is important, the more the contrast is in-

creased. This also leads to increasing noise and image com-

pression artifacts. As shown in Fig. 5, the original image

is compressed using jpeg, and after the visibility restora-

tion, the compression artifacts become clearly visible. To



Figure 6. From left to right, the original images, the results obtained by [1], our results with p = 0.95, sv = 41 and si = 1.

soften the noise and artifacts, an local smoothing is thus

required. This local smoothing must be adapted to the con-

trast magnification factor γ = 1

1−V (x,y)
Is

within (5). A noise

of standard deviation σ becomes a noise of std γσ after im-

age restoration. By averaging on a window of size s×s, the

std becomes 1√
s2

γσ. As a consequence, to come back to a

noise of std σ, s must be equal to the contrast factor γ. We

thus choose for the locally adapted smoothing to perform a

median filter with a square window of size s × s where s

equals the integer part of the contrast factor γ. This rule to

set s may lead to an over-sized window in very foggy ar-

eas. Therefore, we added an extra parameter si which sets

the maximum size of the adapted window. In Fig. 5, the

restoration result where the jpeg artifacts are softened due

to the adapted smoothing is shown (si = 19). When si = 1,
this indicates that the effect of the adapted smoothing is can-

celed.

2.6. Dedicated Tone Mapping

Previously, we described the different steps of the visibil-

ity restoration considering that the image is in float format.

The obtained restored images are usually with a higher dy-

namic than the original one. Therefore, the last step rarely

described in visibility restoration but important for visual-

ization consists in the tone mapping. The same tone map-

ping procedure is important to allow the visual compari-

son of the resulting images obtained by different visibil-

ity restoration algorithms and also for comparison with the

original image. To have a resulting image with not too far

different aspects compared to the original image, we ap-

ply a linear mapping on the log original and log resulting

images which enforces that the corresponding images have

similar mean and std in the bottom third part of the image.

The bottom third is used since it usually corresponds to the

part of the image with less fog. Denote aI and dI the mean

and std of the log original image log(I(x, y)) in the bot-

tom third part, and aR and dR the mean and std of the log

restored image log(R(x, y)) also in the bottom third part.

The first step of the tone mapping consists in computing

U(x, y) = R(x, y)
dI
dR e

aI−aR
dI
dR .

Then the high intensity dynamic of the resulting image

is compressed using a function inspired by [10]. The final

tone mapped image T (x, y) is obtained by non-linear map-

ping T (x, y) = U(x,y)

1+( 1
255− 1

MG
)G(x,y)

, where G(x, y) are the

gray levels of U(x, y) and MG is the maximum of G. The

obtained image T is always in [0, 255].

3. Comparison Experiments

The visibility restoration algorithm is controlled by three

parameters: p which is the percentage of removed atmo-

spheric veil, sv the assumed maximum size of white ob-

jects in the image (see Fig. 4), si the maximum size of

the adapted smoothing to soften the noise amplified by the

restoration (see Fig. 5).

3.1. Complexity

For an image of size sx × sy , the complexity of the

proposed visibility restoration algorithm is O(sxsys2
v ln sv

when using brute-force implementation of the median fil-



Figure 7. From left to right, the original image, the result obtained by [1], our result with p = 0.95, sv = 11 and si = 1.

Figure 8. From left to right, the original image and the results obtained by Kopf&al. [6], Fattal [1], Tan [12], He&al. [5] and our algorithms.

See more results in http://perso.lcpc.fr/tarel.jean-philippe/visibility.

ter, the adapted smoothing being neglected. By using

the median of median along lines filter, complexity is

O(sxsynvsv ln sv). In [9], a fast implementation of the me-

dian filter in O(sxsy) is proposed. Thanks to this fast me-

dian filter, the complexity of the proposed visibility restora-

tion algorithm is also O(sxsy), i.e, it is a linear function

of the number of input image pixels whatever the value of

sv . For instance, 0.17 second is needed to obtain the second

image in Fig. 5 which is of size 759 × 574 (sv = 61 and

si = 1).

3.2. Qualitative Comparison

Fig. 6 shows a comparison between results obtained

by [1] and our algorithm. In the first column are the original

images, and in the second the results obtained by [1]. The

last column displays the obtained results with p = 0.95,
sv = 41 and si = 1. The first line illustrates an inconve-

nience of our algorithm compared to [1]: it is not able to

remove the fog between the small leaves. This is due to the

fact that we used a geometric criterion to decide if the ob-

served white is due to the fog or to the color of the observed

object. On the contrary, the criterion used in [1] is based on

color, and thus the algorithm can not be applied to a gray

level image. An advantage of our algorithm is its ability to

better remove the fog in the bottom of the first image and at

long distance in the second image.

Fig. 7 shows an example of image in presence of inho-

mogeneous fog. The first and second image display the

original image and the result obtained by [1]. Notice how

the second image is uniformly green compared to our result.

To process this image and remove locally inhomogeneous

fog, the smoothing scale on atmospheric veil must be set to

the rather small value sv = 11. The original image being of

good quality, no image smoothing is performed (si = 1).
Fig. 8 allows the comparison of our results with four state

of the art visibility restoration algorithms: Kopf&al. [6]

which uses 3D information on the scene, Fattal [1] which is

based on a chroma criterion, Tan [12] and He&al. [5] which

are based on a geometric criterion. Notice that the results

obtained with our algorithm seems visually close to the re-

sults obtained by Kopf&al. and He&al., with less saturated

colors compared with Tan, thanks to the local white balance

preprocessing.

3.3. Quantitative Evaluation

To quantitatively assess and rate these four methods, we

use the method dedicated for visibility restoration proposed

in [3]. This method computes three indicators e, r̄ and Σ



Figure 9. From left to right, the original image, the map of ratio r of the gradients at visible edges for Tan [12] and for our algorithm, the

map of pixels becoming completely black or completely white for Tan and for our algorithm. The corresponding restored images are the

last two images of Fig. 8.

Table 1. Rate e of new visible edges produced by the five compared

methods on four images.

e Kopf&al. Fattal Tan He&al. Our

ny12 0.05 -0.06 -0.14 0.06 0.07

ny17 0.01 -0.12 -0.06 0.01 -0.01

y01 0.09 0.04 0.08 0.08 0.024

y16 -0.01 0.03 -0.08 0.06 -0.008

Table 2. Mean ratio r̄ of the gradients at visible edges obtained by

the five compared methods on four images.

r̄ Kopf&al. Fattal Tan He&al. Our

ny12 1.42 1.32 2.34 1.42 1.88

ny17 1.62 1.56 2.22 1.65 1.87

y01 1.62 1.23 2.28 1.33 2.09

y16 1.34 1.27 2.08 1.42 2.01

Table 3. Percentage of pixels which becomes completely black or

completely white after restoration for the five compared methods

on four images.

Σ Kopf&al. Fattal Tan He&al. Our

ny12 0.002 0.086 0.02 0.0 0.0

ny17 0.013 0.020 0.008 0.001 0.0

y01 0.0002 0.015 0.005 0.007 0.0

y16 0.003 0.003 0.005 0.002 0.0

allowing to compare two gray level images: the input im-

age and the restored image. The visible edges in the image

before and after restoration are selected by a 5% contrast

thresholding. This allows to compute the rate e of edges

newly visible after restoration. Then, the mean r̄ over these

edges of the ratio of the gradient norms after and before

restoration is computed. This indicator r̄ estimates the av-

erage visibility enhancement obtained by the restoration al-

gorithm. At last, the percentage of pixels Σ which becomes

completely black or completely white after restoration is

computed.

These indicators e, r̄ and Σ are evaluated for

Kopf&al. [6], Fattal [1], Tan [12], He&al. [5] and our al-

gorithms on four images, see Tab. 1, Tab. 2 and Tab. 3.

Used parameters are sv = 41, si = 1, p = 0.9 with lo-

cal white balance. Results on images y16 and ny12 can be

seen on Fig. 8. From Tab. 1, we deduce that depending of

the image, Kopf&al., Fattal, Tan and our algorithms may

remove visible edges, contrary to He&al. algorithm. From

Tab. 2, we can order the five algorithms in decreasing order

with respect to average increase of contrast on visible edges:

Tan, our, He&al., Kopf&al. and Fattal. This confirms our

observations on Fig. 6, Fig. 7 and Fig. 8. The results in

Tab. 2 must be balanced. Indeed, if visibility restoration

algorithms must increase the contrast, artificial edges must

not becomes visible. In Fig. 9 is shown the maps of the

ratio r of the gradients at visible edges for Tan and our

algorithm, and one can notice than extra edges appear in

the sky with Tan’s algorithm. This indicates that the con-

trast has been increased probably too strongly. Tab. 3 gives

the percentage of pixels which become completely black or

completely white after the restoration. Compared to others,

our and He&al. algorithms give the smallest percentages.

These perturbed pixels are shown in white in Fig. 8 for Tan

and our algorithm.

4. Application

The evaluation of visibility restoration is difficult on real

images since no reference is available. To demonstrate the

interest of the proposed visibility restoration algorithm in

the context of intelligent vehicles, after lane-marking ex-

traction, we evaluate the obtained results with and without

restoration on a database of 12 images with ground-truth.

The 12 images were extracted from two different sequences

with fog. Each of these images was manually labeled with

lane-marking and non-lane-marking labels. We use the

classical evaluation by the Receiver Operating Character-

istic (ROC) curve completed with the Dice curve, follow-

ing [13]. Two extraction algorithms are tested: the simple



Global Threshold (GT) and the Symmetric Local Thresh-

old (SLT) which gives best results in comparison [13]. The

ROC curves in Fig. 10 shows the large gain obtained when

using restoration with the GT algorithm. For the SLT algo-

rithm, it is difficult to conclude, the two ROC curves being

too close. The Dice curve achieves a maximal value of 75%
for the SLT lane-marking extraction algorithm on restored

images, compared to a maximal value of 73% on the foggy

images. This illustrates the advantage of the restoration for

lane-marking extraction. The value of the threshold with

maximum dice is 50 which is similar to the optimal value

obtained on a larger database without fog, see [13]. The op-

timal threshold is only 23 without restoration. This means

that the visibility restoration produces images with proper-

ties similar to images without fog, with respect to a lane-

marking extraction task. Therefore, visibility restoration

used as a pre-processing step allows to use lane-marking

extraction as usual with the same tuning.
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Figure 10. ROC and Dice curves obtained for GT and SLT lane-

marking extraction algorithm with and without visibility restora-

tion. A ROC curve displays the True Positive Rate (TPR) versus

the False Positive Rate (FPR) for different values of the extrac-

tion threshold. The Dice curve displays 2TP

(TP+FP )+P
versus the

extraction threshold and is dedicated to the detection of small ob-

jects.

To illustrate the stability obtained with the proposed tone

mapping step along time, a gray level video before and after

visibility restoration (p = 0.95, sv = 61 and si = 5) is
supplied as additional material.

5. Conclusion

We set the visibility restoration from a single image

without using any extra information as a particular filtering

problem and we thus proposed a novel algorithm based on

median filter. Its main advantage is its speed since its com-

plexity is only a linear function of the input image size and

it also achieves as good or even better results compared to

state of the art algorithms as illustrated in the experiments.

We have also proposed a new filter which preserves edges

and corners with obtuse angle as an alternative to the me-

dian filter but other operators dedicated to visibility restora-

tion allowing to infer the atmospheric veil can be also imag-

ined. The proposed algorithm, thanks to its speed, may be

used with advantages as pre-processing in many systems

ranging from surveillance, intelligent vehicles, to remote

sensing.
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