
Curve Finder Combining Perceptual Grouping and a Kalman Like Fitting

Frédéric Guichard Jean-Philippe Tarel
INRETS

2, ave. du Gen. Malleret-Joinville
BP 34-94114 Arcueil-Cedex, France

Abstract
We present an algorithm that extracts curves from a

set of edgels within a specific class in a decreasing or-
der of their “length”. The algorithm inherits the percep-
tual grouping approaches. But, instead of using only local
cues, a global constraint is imposed to each extracted sub-
set of edgels, that the underlying curve belongs to a specific
class. In order to reduce the complexity of the solution, we
work with a linearly parameterized class of curves, func-
tion of one image coordinate. This allows, first, to use a re-
cursive Kalman based fitting and, second, to cast the prob-
lem as an optimal path search in an directed graph. Ex-
periments on finding lane-markings on roads demonstrate
that real-time processing is achievable.

1 Introduction
Our study is motivated by the detection - via on-board

camera - of road lane markings for automatic vehicle guid-
ance. The difficulty of finding road markings and bound-
aries stems from two main facts. First, such “features”
often suffer from low image contrast. They may also be
masked by shadows, light spots, be partially occluded, or
even be physically fragmented. Second, the extraction of
markings must be performed in a reasonable time on a stan-
dard on-board computer.

To alleviate these adverse conditions, we assume that
markings are ideally embedded into a family of smooth
curves,

�
. A direct consequence of this modeling, is that

we can now select edges based on their curve fitting perfor-
mance, rather than a more traditional - and blind - gradient
magnitude thresholding.

We favor the longest curves that belongs to
�

as char-
acteristic of the features we seek to retrieve. Indeed, the
existence of such curves in a typical image of a road, has a
high probability to correspond to road boundaries or lane-
markings.

When the family of curves
�

is of dimension 2 or 3,
the Hough transform can be used to find the longest el-
ements of that family. Nowadays, the most widely used
curve finder involves, first, linking edgels via connectivity

properties and, second, partitioning the result into line seg-
ments [7]. After such a partitioning the problem remains
to aggregate such segments into curves [13]. In [4, 5] are
proposed methods that follow the edgels and recursively
fits a curve until the fitting error is large. But, important
difficulties remain: the extracted curves are highly depen-
dent on the selected starting points, as well as the order of
the edgel linking. The approach we have explored tackles
such problem.

Other approaches have been motivated by the idea of
perceptual grouping. The edgels are organized as nodes
of a graph, and linked to each other through arcs. The
grouping relies on evaluating “perceptual cues”, which are
stored in each arc. Generally such cues correspond to some
intuitive measure of the local geometrical consistency as
evaluated for each pair of nodes. Measures such as align-
ment, co-circularity, and saliency have been proposed [14].
In [2] the grouping is modulated through statistical prop-
erties. Different algorithms have been proposed to find
curves from such graphs, for instance: dynamic program-
ming and relaxation (see [2, 1]). All such methods propose
cues based on pair-wise interactions between edgels, and
seem difficult to extend when a more global constraint on
the curve is needed.

In [10], the author proposes a method that finds the
longest convex subgraph. Convexity proves to be a strong
enough constraint such that the computation can be per-
formed by an exhaustive search.

We propose here to combine the above approaches
tuned to the particular case of our road following appli-
cation. The main difficulties are in designing (i) a global
grouping technique that may result in a high combinato-
rial complexity, and (ii) a fitting technique (for the family�

) that involves a large amount of computations. How-
ever, the problem can be drastically simplified thanks to
two strong assumptions made on

�
. (1) We consider only

parametric curves �������	��
 , where � is the horizontal
coordinate, and � the vertical one. This is an acceptable
assumption in the case of a vehicle well-aligned with the



road. In turn this implies finding directed arcs between
edgels, leading to a connected acyclic directed graph (i.e.,
a network). (2) We assume that

�
is a linear subspace of

finite dimension, which allows us to use a recursive curve
fitting.

The paper is organized as follow. First, we describe the
variational statement of our problem. Second, we define
a simple edgel detector based on level-lines. Third, we
describe an efficient recursive implementation of the curve
fitting using Kalman filtering. We then we show, how we
can use it for finding curves described by � � ���	� 
 in an
edgel set. Finally, we apply the designed technique to the
retrieval of lane-markings on road images.

2 Geometric “Best-First Segmentation” of
Edges

We want to select edges based on geometrical aspects.
More precisely, we want to select a set of edgels corre-
sponding to a shape approximatively in

�
. We define the

fitting error ������� of a set of edgels, �	��

��������������� , as the
sum of the Least-Squared distances between the edgels and
the best fitting shape � in

�
:

� ����� ��� 
 ����������� � 
 ������������ � ��! 
#" $ ��� � �%� 

A large error indicates that the edgel set cannot be well

represented by a curve in
�

. We obviously have� ���&� ��� 
 ����������� � 
(' � ����� �)� 
 ����������� � ��� �+*-, 

which means that adding an edgel to a set of edgels will
increase the fitting error. Therefore, in order to perform a
grouping of edgels, we need to balance this increase of er-
ror. Hence we introduce a measure �
.�/1032 �4���5
6�������1�����7� 

based on the sum of the edgel lengths and on their density
within the fitted curve. To balance the fitting error, it is
sufficient that � .8/1032 satisfies:� .�/1032 ��� 
 �������1��� �+*-, 
(9 � .�/1032 �)� 
 ����������� � 
�: � .8/1032 �)� �+*-, 

A simple example of such a measure is the squared sum of
the edgel lengths.

An “energy”, that indicates how consistent the edgels
are with respect to the best curve in

�
, can be defined by

the weighted differences of � .�/1032 and �;����� :< ���5
=�����������>� 
 �@? � .�/1032 ���5
6������������� 
1A � ����� �)�5
6������������� 
B�
where ? controls the tradeoff between � ����� and �;.�/1032 . We
then derive the energy gain of grouping an edgel �C�+*-,
with a set of edgels ����
=�������1���>��� by:D < � < ��� 
 ����������� � ��� �+*-, 
1A < �)� 
 ����������� � 
BA < �)� �(*E, 


A positive
D <

represent a likely good grouping of
edgels. A set of edgels having a large

<
is then clearly

an important geometrical structure. Keeping only subsets,
of the edgel set, that have a large enough

<
becomes a

valid alternative over selecting edgels with respect to their
contrast amplitudes. The problem is now how to find such
subsets. Ideally, this involves finding the partition F , of
the edgel sets, that maximizes a “Mumford and Shah” like
energy [12]:

� �GF 
 �  H ��IKJ ? � .�/1032 �3��� � �MLON 
PA � ����� �4��� � �QLRN 
8S
(1)

Unfortunately, this problem is computationally difficult
to solve for two reasons. First, the maximization is not lo-
cal and its complexity is similar to the “salesman” problem.
Second, this maximization of (1) requires the computation
of � ����� for all subsets of the edgel set, which is highly com-
putationally expensive. With respect to perceptual group-
ing techniques, the difference implied in our formulation
is that global constraints are computed. Therefore, it is not
obvious to directly apply one of the proposed algorithm
that would computes an approximate solution. In addi-
tion, any iteration, with such algorithms, involves many
fits of edgel subsets, which might not be computationally
tractable.

(a) (b) (c)

(d) (e) (f)

Figure 1. (a) original image of a white lane per-
turbed by a spot light, results of Canny-Deriche edge
detector with a 1 pixel size smoothing: (b) no thresh-
old on the gradient magnitude and (c) 40 gray lev-
els threshold. On the second line, results of the line
segment detector for different values of the minimal
length: (d) 4 pixels, (e) 15 pixels and (f) 20 pixels.

Nevertheless, an approximative solution of (1) can be
obtained in reasonable time under the following assump-
tions:T

Connected straight line edgels can be grouped to-
gether. Thus, edgels can be defined as straight line
segments.



T
The family of the shapes

�
is a linearly parameteriz-

able subset of curves.T
The edgel set can be ordered. Therefore, the edgel
graph is a connected acyclic directed graph.

Under these assumptions, we propose a new approach for
an efficient partitioning which approximates the best solu-
tion F maximizing (1). Our approach consists in finding
the longest edgel subset first. Then, to remove the found
subset of the edgel set, and to iterate the optimal search
for the next longest edgel subsets. With this partitioning
approach, that we named Best-First Segmentation, the re-
sulting subsets are ordered in decreasing energy.

3 Straight Line Segment Detector
3.1 Edgels as Straight Line Segments

Most of edge-detector algorithms involve (at least) a
smoothing and a threshold steps [9]. Both steps decrease
the number of resulting edgels, and in fact may remove
useful information, as we explain below.

Smoothing. It removes from the image “small” details
created by noise. Since, the chosen filtering is often linear,
“small” detail means a “small” mix of spatial size and gray-
level amplitude. Therefore the selection is harder on low-
contrast zone. As example, we show in Fig. 1 (b) or (c),
a Canny-Deriche edge detector applied on an image of a
light spot on a white lane-markings. The magnitude of the
gradient along the light spot is so strong that the smoothing
removes the edge of the white lane-markings we want to
detect.

Thresholding. It usually discards low contrast candi-
date edgels.

If we reduce as much as possible the effects of the
smoothing and threshold steps, edgels in images are nu-
merous, and a criterion for selecting these becomes manda-
tory. We believe that a selection based on geometrical con-
siderations is a better alternative than one based on inten-
sity contrast, as illustrated in Fig. 1.

3.2 Extracting Edgels
We start with an edge map defined as the set of all the

level lines of the image. (As defined in [8], we call “level
line” the boundary of a level set

���
, i.e., the set of pixels

having an intensity larger or equal to � ). Note that, at this
point, no selection is performed. Of course, others edge
map definitions could work (e.g. lines given by the zero
crossings of the Laplacian). The important point here, is
to reduce as much as possible the use of contrast-based
selections, given the problems outlined above.

We then define an edgel as a straight segment embedded
in the edge map, or equivalently, as part of a level line. Due
to the use of an image grid, there exists only 8 possible lo-
cal directions for any pixel. These directions are coded by

(a) (b)

(c) (d)

Figure 2. (a) the original image and the result of
the line segment detector for different values of the
minimal length (b) 8 pixels, (c) 16 pixels and (d) 32
pixels.

a number between 0 and 7, alike the well known Freeman
codes. The list of directions on these connected edgels is
thus equivalent to the chain-code of an edge.

Different algorithms have been proposed for recogniz-
ing when a chain code of a list of connected edgels is a
straight line or not [11, 16]. Using such algorithms al-
lows us to construct a complete tree of possible straight
line chain-codes given a pre-specified target length. Due to
the � � symmetry of the process, Freeman [16] proves that
at most two basic directions are present in the chain code
and these can differ only by unity, modulo 8. Therefore,
this tree is a binary tree. Note that the size of such a tree
remains relatively small.

Once the tree has been constructed, a fast algorithm for
following connected straight segments of the edge map is
used. Given a starting edgel, the tree of chain codes is tra-
versed until a leaf is reached, i.e., until an end-point feature
pixel is reached. We end up with a list of straight segments,
denoted in the following by “edgels”.

4 Curve Detector
In this section we explain how to group edgels lying on

a certain shape and how to then find the principal curves
from an image. As specified in Section 2, we first restrict
our attention to a linearly parameterizable subset of under-
lying curves

�
. Indeed as pointed out by [4], linear sub-

spaces of curves allow recursive estimates of the curve pa-
rameters when a new edgel is provided. Noticeably, this
is also the main property upon which Kalman filtering is
based. Most common subsets such as straight lines, conics,
cubics are examples of subspaces of curves. More complex



curves may be approximated by higher degree algebraic
curves [15].

We then consider the underlying curves explicitly de-
scribed as a function of one of the image coordinates:

� �
� ��! 
 � � � ��
�� � � � � ��
 ��� (2)

where �	� � ��
 are the image coordinates of a point on the
curve, � � ��� � 
4
�� � � � is the coefficient vector of the curve
parameters, and

� � ��
 � � � � � ��
 
 
�� � � � is a vector of func-
tions of the vertical coordinate � .
4.1 Recursive Fitting of a Curve in 	

As explained in Section 3, the used edgels are straight
line segments with pixels as extrema. Thus, an edgel may
be described by two pixel positions, i.e, by two points.
Keeping in mind that we are still working on edgels,
we will consider from now-on that the dataset comprises
points only, for the sake of clarity.

The simplest way to fit a curve to data is to minimize
distance over the set of given data points �	��
=� ��
 
�,
��
�� �
with the least-squares criterion:� ���&�� �

 ,
��
�� � � � � ��
 
 � � � A ��
 
 $ (3)

The minimization of the previous fitting error gives the
well-known normal equations:

��� � � � � ��� � (4)

where
� � � �	� 
 
 ,���
�� � is the vector of � coordinates,

the matrix
� � � � � � 
 
 
 ,���
�� � is the design matrix, and� � � ��� � is the scatter matrix. Let

< � � ��� � ,
thus (4) is rewritten as

� � � � � < � . The computation of
the best fit consists in solving the previous linear system.

Since the tasks of edgel grouping and curve fitting are
not separable, a recursive algorithm is required. Given a
new data point � � �+*-,�� �
�+*-, 
 , we need to update the solu-
tion � � to � �(*E, . Therefore, an updated inverse of

� � is
needed. We first compute the vector

� �+*-, � � � �
�+*-, 
 .
The updated scatter matrix is then given by

� �(*E, � � � :� �+*-, � ��+*-, , and we have
< �+*-, � < � : � �+*-, � �+*-, .

In comparison to [4], where the recursive fitting is based
on a QR decomposition of the design matrix

�
, we recast

the curve fitting in the framework of Kalman filtering be-
cause less computer memory and power are then required.
Kalman filtering is based on the following property for the
updating:

� � : ��� � 
�� , � � � , A�� ��� , � � , ��� � � � , (5)

with � � ���P: � � � � , � 
 � , . Equation (5) assumes that the����� matrix
�

can be inverted and is further based on the

0

20

40

60

80

100

120

0 20 40 60 80 100 120

"data.pt"
"fit1"

0

20

40

60

80

100

120

0 20 40 60 80 100 120

"iccv2.pt"
"truc2"

0

20

40

60

80

100

120

0 20 40 60 80 100 120

"iccv3.pt"
"truc3"

0

20

40

60

80

100

120

0 20 40 60 80 100 120

"iccv4.pt"
"truc4"

0

20

40

60

80

100

120

0 20 40 60 80 100 120

"iccv5.pt"
"truc5"

0

20

40

60

80

100

120

0 20 40 60 80 100 120

"iccv6.pt"
"truc6"

Figure 3. Recursive fit with an increasing number
of points (from 1 to 6) by a polynomial of degree 4.
There is 5 parameters for this kind of curve. When
the number of point is lower than 5, the recursive
fitting algorithm gives curves of lower degree.

fact that
�

is a vector of size � . From (5), we deduce the
recursive computation of  �+*-, � � � ,�+*-, :

 �+*-, �! � A"� �+*-,� � � �+*-, � ��+*-,  � (6)

with � �(*E, � �#�=: � ��+*-,  � � �+*-, 
 � , . The previous equa-
tion gives the so-called covariance matrix  �+*-, of � �+*-,
as a function of the previous covariance matrix  � and the
vector

� �+*-, .
The updated curve parameters are then obtained via:

� �+*-, � � � :$ �+*-, � �+*-, �	� �+*-,(A � � � � �(*E, 
 (7)

The recursive fitting algorithm consists in:T
Select an edgel and initialize the recursive fitting by
setting  
 to % times the identity matrix, and � 
 to
zero. Then compute the covariance matrix  , us-
ing (6) and the curve parameters � , using (7).T
Given a new data point � � �+*-, � � �+*-, 
 , the covariance
matrix  � is updated using (6) and the curve param-
eter vector � � is updated using (7).

The previous choice of  
 insures that (5) can be applied
at each step without any problem, even if the number of
points is not sufficient for constraining well-enough the
least-squares minimization of (3). This is equivalent to the
Ridge Regression regularization investigated in the context
of non-recursive fitting of algebraic curves [15]. As shown
in Fig. 3, when the data does not contain enough informa-
tion for the accurate estimation of curves of degree " , the
algorithm fits the data set by a lower degree curve.

The fitting error can be recursively updated, without re-
quiring the updated curve parameters � �+*-, and the up-
dated covariance parameters  �+*-, , using:� ������+*-, � � ������ : � � �+*-, A � � � � � � �+*-, 
 
 $

� : � � �	�
�+*-, 
# � � � �
�+*-, 
 (8)



which is obtained by substituting (6) and (7) in (3). This
is of practical importance for optimizing the speed of the
curve finder described in the next section.
4.2 Search for the Best Curve

As explained in Section 2, our algorithm is not finding
the curves in the image in a random order, but, rather, it
first find the longest, and then the others ones by decreasing
energy

<
.

Figure 4. Main curves detected. Both longest
curves are numbered. All curves have 3 parameters.

The assumption of explicit curves allows us to order the
edgels, e.g. in a decreasing order of the explicit coordinate
(here � ). Then, starting from the bottom of a curve (in the
image), that curve is always grown upward toward smaller
� .

We organize the edgels as nodes in an acyclic directed
graph, where every edgel is linked to all other consistent
edgels with smaller � coordinates. Let � , and � $ be two
edgels, we say that �C, � � $ if there is a direct link in the
graph, from � , to � $ . We associate to each edgel � : � � �
its coordinates, and the

�
best curves arriving at � . Each

curve is specified by its energy � � � (i.e
<

), its parameters� � � , its covariance matrix � �  , and its length � � � .
The Moore-Dijkstra algorithm performs optimal search

when arc weights are fixed. Contrary to the use of local
cues, these weights are unknown with fitted curves. There-
fore, we propose a variation of the classical Moore-Dijkstra
algorithm to find the longest path in the graph with positive
but unknown arc weights:
For each ordered node � :
1. Compute the edgel energy

< ��� ��� 
 �? � .8/1042 �)� � � 
 .
2. For the

�
best curves of every

nodes ��� such that ��� � � com-
pute:

< �)� � ��� 
 � � � � � :@? � .�/1032 �)� � � � ��� � � 
(A�;����� ��� � �&� � �  �=��� � � 
 .
3. Let � � � � be the � ' � ' �

best
<

in step 2 and 1. Then compute
the

�
best curves associated to

the best energies: � � ��� � �  K� � � �	 � � � ��
 �)� �� ��� � �  � � �=��� � � 
 .

Figure 5. Examples of main curves detected in im-
ages with complicated lightening conditions or with
holes in the white lane-markings.

At the end of the loop, the edgel with the curve of largest
energy is the lowest coordinate edgel of the best curve.
Finding the best curve is then straightforward. Let us de-
scribed the ingredients of the algorithm:� ����� is recursively computed as the distance of the ex-

trema points of � to the chosen
�

best curve � �� of � � .
It uses (8) replacing � �+*-, � � �+*-, by the coordinates
in � � � , and � � �  � by � �� � � , � �� �  .� .�/1032 is the squared length, so that � .�/1032 ��� �� ��� 
 �
��� �� � � :�� � � 
 $ � � .8/1042 �)� �� 
1: � .8/1032 �)� 
1:��
� � � � �� � � .

	 � � � ��
 denotes the recursive fitting where the edgel �
is added to the fitted curve stored in � �� . It follows
formula (6) and (7), replacing � �+*-, �  �+*-, by � � � ,� �  , and � � �  � by � �� � � , � �� �  .

	 � � � ��
 may be
reduced to initialize the fitting for the single edgel �
to the straight line passing through it, as described in
Section 4.1.

As we see, the algorithm involves two related loops on
the edgels. Without, the proposed recursive process, a fit-
ting step would have been needed within these two loops.
Denoting by 
 the number of edgels, and considering an
average of 
��� of edgels per curve, such a process would
have yielded an average complexity of

� 
��� (worse case is� 
�� ). The recursive fitting allows us to bring the fitting out
of one loop as well as reducing its associated complexity.
Inside the loops, it remains to estimate errors, which is a
simple computation with fixed and small cost. The result-
ing complexity is therefore at worse

� 

$
.

The proposed algorithm represents a trade-off between
optimality and efficiency. When

�
, the number of consid-

ered fitted curves for each node increases to the maximum



path number, our search algorithm becomes optimal, to the
detriment of processing speed.

5 Application to Real-time Video Analysis

Figure 6. Left: Example of longest curves finding
using cues based on only pair of edgels. (A fitting
is performed afterwards on the found edgel subsets).
We see that since no global geometrical constraints
is asked, the edgels of the white marks are linked to a
telegraphic post located out of the road. Right: two
longest lines found by the algorithm.

In this section we present experiments for curve detec-
tion in the context of lane-markings recognition for auto-
matic control of vehicles [3, 6]. We assume here that the
road is planar and that its shape may be approximated by
a polynomial: � � � � ���! 
 � � � � � . The transformation be-
tween the road plane �	� � � � � 
 and the image plane � � � ��
 is:
� ����� ���� � and � ��� � ,� � , where �	� and � � are only functions
of the camera calibration parameters. We set the origin of
coordinate system to a point on the line of horizon - the
position of this line can be computed from the camera cali-
bration. We can then compute how the road is projected in
the image as the curve:

� �
� � ! 
 � � � , � � (9)

We have found experimentally that in most cases, " � �
or 
 is sufficient for a correct approximation of the road
shape. In Fig. 6, we compute the two best curves using
only local cues (a), and the two best curves that stands in�

(b). The first algorithm links the white lane markings to
a telegraphic post, which constitutes the best curve having
a small mean curvature. Whereas the second follows the
lane markings which is better represented by a function of�

. Figures 4 and 5 show the best found curves where " is
respectively 2 and 3. Size of the images is ����
 � ����
 . Typ-
ical computation time (in seconds) on a Pentium 200Mhz,
32Mo are: edgels set computation (keeping only those that
are at least 8 pixels long): � � ��� � , and for best curve find-
ing, when based on local cues: � � ��
=� , when embedded in a
family: between 0.1 and 0.5 second depending on " and on

the image complexity (only the best fitted curve is saved� ��� ).
6 Conclusion

We have described an algorithm for finding subsets of
edgels that are embedded in a specific family of curves.
Thanks to two assumptions made on the family of curves
- i.e., linear parameterization, and functions of one coor-
dinate - we derived a process based on a classical graph
algorithm combined with a Kalman based recursive fitting.
This allows the process to run in a reasonable time. We are
currently working on optimizing this algorithm, and ex-
tending the technique for finding more generic curves.

References
[1] T. Alter and R. Basri. Extracting salient curves from im-

ages: An analysis of the saliency network. IJCV, 27(1):51–
69, March 1998.

[2] A. Amir and M. Lindenbaum. A generic grouping algo-
rithm and its quantitative analysis. PAMI, 20(2):168–185,
February 1998.

[3] T. K. C. Thorpe, M. Herbert and S. Shafer. Vision an navi-
gation for the canegie-mellon navlab. PAMI, 10(3), 1988.

[4] D. Chen. A data-driven intermediate level feature extrac-
tion algorithm. PAMI, 11(7):749–758, July 1989.

[5] I. Cox, J. Rehg, and S. Hingorani. A bayesian multiple-
hypothesis approach to edge grouping and contour segmen-
tation. IJCV, 11(1):5–24, August 1993.

[6] E. Dickmanns and A. Zapp. A curvature-based scheme for
improving road vehicle guidance by computer vision. In
Proceedings of SPIE Conference on Mobile Robots S.161-
16, volume 727, 1986.

[7] M. Fischler and R. Bolles. Perceptual organization and
curve partitioning. PAMI, 8(1):100–105, January 1986.

[8] F. Guichard. Axiomatization of images and movies scale-
space. PhD thesis, University of Paris IX-Dauphine, 1994.

[9] M. Heath, S. Sarkar, T. Sanocki, and K. Bowyer. A ro-
bust visual method for assessing the relative performance
of edge detection algorithms. PAMI, 19(12):1338–1359,
December 1997.

[10] D. Jacobs. Robust and efficient detection of salient convex
groups. PAMI, 18(1):23–37, January 1996.

[11] W. G. Kropatsch and H. Tockner. Detecting the straightness
of digital curves in O(N) steps. Computer Vision, Graphics,
and Image Processing, 45(1):1–21, Jan. 1989.

[12] D. Mumford and J. Shah. Boundary detection by minimiz-
ing functionals. In CVPR, pages 22–26, 1985.

[13] P. Rosin and G. West. Nonparametric segmentation of
curves into various representations. PAMI, 17(12):1140–
1153, December 1995.

[14] A. Shashua and S. Ullman. Grouping contours by iterated
pairing network. Neural Info, 3:335–341, 1991.

[15] T. Tasdizen, J.-P. Tarel, and D. Cooper. Improving the sta-
bility of algebraic curves for applications. accepted in IEEE
Transactions on Image Processing, 1999. also as LEMS
Tech. Report 176, Brown University.

[16] L. Wu. On the chain code of a line. PAMI, 4(3):347–353,
May 1982.


