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ABSTRACT

We present an algorithm that extracts the largest shape with-
in a specific class, starting from a set of image edgels. The
algorithm inherits the Best-First Segmentation approach [1].
However, instead of being applicable only to shapes defined
within a given class of curves, we have extended our ap-
proach to tackle more general - and complex - shapes. For
example, we can now process shapes obtained from sets de-
fined over different kinds of curves and related to one an-
other by estimated parameters. Therefore, we go from a
segmentation problem to a recognition problem. In order to
reduce the complexity of the searching algorithm, we work
with a linearly parameterized class of shapes. This allows
us, first, to use a recursive Least-Squares fitting, second, to
cast the problem as the search of a largest edgel subset in a
directed acyclic graph, and, third, to easily introduce a pri-
ori information on the location of the edgels of the searched
subset. This leads us to propose a unified approach where
recognition and tracking are combined. Experiments on rec-
ognizing and tracking both left and right road boundaries
demonstrate that real-time processing is achievable.

1. INTRODUCTION

A robust detection and tracking - via on-board camera - of
road lane markings and boundaries is of major importance
for automatic vehicle guidance. For lateral vehicle guid-
ance, road boundaries detection must at least provide at a
good rate estimates of the relative orientation and of the lat-
eral position of the vehicle with respect to the road. Au-
tomatic vehicle guidance has been a subject of investiga-
tions from many years [2, 3]. Contrary to these techniques
and many classical approaches, we merge the recognition
and the tracking processes into one single process. In ad-
dition, in order to cope with occlusion by vehicles, sign-
s, light spots or shadows, and low image contrast, we do
not assume particular markings or road lightning condition-
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s. Lane recognition starting from a large set of edgels is
based only on geometrical features.

This paper presents an approach based upon the curve
segmentation algorithm first introduced in [1]. This algo-
rithm proves especially attractive because it can handle curves
even in situations where there are gaps in the data, this in an
automatic fashion. In the context of this algorithm, shapes
in 2D images are described by their boundaries, which are
then represented by linearly parameterized curves. In [1],
the N longest curves which individually fit into a chosen
class of curves are obtained. Due to the geometry of the
road, the probability to obtain the lane boundaries from the
N longest curves proves to be high. However, no consisten-
cy between extracted curves is imposed neither in time nor
in space.

We therefore extend this method: (i) by modeling lane
boundaries as the image of two parallel curves on the road,
so that left and right boundaries contribute to that same
model; (ii) by imposing time consistency between the ex-
tracted models, so that the left and right boundaries are si-
multaneously extracted. This provides reliability in the de-
tection - the probability to find two parallel curves that do
not correspond to the lane boundaries is smaller than for t-
wo independent curves -, better measurement since the two
curves are embedded into the same model, and a reduction
of the computation time thanks to the tracking. An alterna-
tive way to think about our algorithm, is that it consists in a
model based tracking combined with extracting the largest
data set fitting the model.

2. RECOGNITION

2.1. TheModel

We assume that the road is planar and that its boundaries
may be approximated by a polynomial of degree d: y* =
¢ o bi *%. The transformation between the road plane
(z*,y*) and the image plane (z,y) is: z = I, % and y =
lyg— where I, and [, are only functions of the camera cali-
bration parameters. We set the origin of the coordinate sys-



tem to a point on the sky line - the position of this line can be
computed from the camera calibration. Then, the left road
boundary is projected in the image as curve s s;:

d
y=> ag'” (1)
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The right road boundary is assumed to have the same shape
as the left one, and being translated by the width of the lane.
Therefore, its projection in the image is the curve s,;gns:

y = Zaixlﬂ' + wx (2)

where w is the unknown width of the road lane. In a typical
image, the road boundaries appear as pieces of s;.¢; and
Sright-

We define the extended road boundaries model on the
basis of the above pairing of curves. The extended param-
eters of such a shape are A = (a;,w), 0 < i < d. Defin-
ing Eeft(x) = ($7 17 wila s 7$17d7 0) and FTight(x) =
(z, 1,271, ..., 2!~ x), equations (1) and (2) above be-
comey = A Fj () and y = AP Fy;n¢ (2), respectively.

2.2. Maximum Length Criterion

We formulate the “lane boundary detection problem”, as a
search for the longest boundaries that belong to the shape
model introduced above. Since the lane boundary model is
a linearly parameterized class of shapes, it can be detected
by extending the searching algorithm we proposed in [1].
In this earlier work, the highest energy subsets of edgels
that fit to an underlying curve are recursively detected, see
Fig. 1(c). Following the Mumford and Shah [4] approach,
the energy was defined as a tradeoff between the fitting er-
ror and a function e°?¢" of the length of the edgel subset

{p17 s 7pm}:
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A difficult problem in obtaining such an energy is the choice
of the parameter \. Indeed, the measure e°¥*" is balanced
with the fitting error and therefore its convexity is related
to the fitting error convexity, as well as A, and it cannot be
physically interpreted without an explicit definition of e®¥¢"
and efé,

We have found experimentally, that it is better to accept
an edgel subset as a valid approximation of an underlying
parametrized shape, if its e/ is lower than a threshold \.
The value of X is then directly related to the observed ac-
curacy of the shape drawing in the image. The first term in

the energy (3) is changed accordingly by g(ef“("“%””)),

E(Pla--- apm) =

where g is a step function defined as g(z) = Owhenz < 1
and g(x) = +oo anywhere else. The selection of a step
function g permits us to bypass the delicate choice of a bal-
ance between the two terms in (3). Here g forces the data
to be approximated within a range from 0 to A. Hence, re-
gardless of the choice of e°v¢", the problem becomes simply
to find the largest edgel subset which approximates a shape
in a given class. Roughly speaking, instead of searching for
the best tradeoff between e/ and e°¢", we are now search-
ing for the largest subset, i.e., the one that maximizes e®>¢",
among those which satisfy a minimal quality fitting criteri-
on, i.e, efi < X. We call this formulation the Maximum
Length Criterion under a fitting constraint, or MLC in the
following.

Choosing simply, for MLC, the sum length of edgels
in the subset, the problem can be equivalently cast as the
minimization of:

fit m
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where [; is the length of edgel p;. From (4) and following
the Best-First Segmentation approach [1], one can naturally
make use of the MLC for partitioning all edges of a given
image in subsets, where each subset approximates a shape in
a given class. Indeed, the Best-First Segmentation approach
is always applicable, since it consists in finding the largest
edgel subset first, followed by a removal of this subset from
the edgel set. Then one may iterate the search for the next
largest edgel subsets, and so on, until there are no edgels
left.

In the context of edge segmentation, on the contrary to
approaches based on the energy (3), the MLC yields a prob-
lem controlled simply by the A parameter, which has a phys-
ical meaning - the maximal average distance approximation.
Furthermore, the MLC can be chosen as need fits, since it
will not be balanced with the fitting error.

2.3. Recognition Algorithm

The recognition process in an image consists in (see [1] for
details):

e Edgel Detector: For minimizing as much as possi-
ble the use of contrast-based selections, an edgel is
defined as a straight line segment embedded in level
lines of the given image. Since the thresholding of the
gradient magnitude is reduced to a single gray level d-
ifference, the edgels are numerous, see Fig. 1(b), but
contrary to other approaches no low contrast bound-
aries are missed.

e Graph Building: Edgels are ordered by their coor-
dinates and organized as nodes in an acyclic direct-
ed graph, i.e every edgel is linked to all the follow-



Fig. 1. (a) the original image and (b) the result of the straight
line segment detector. From (b), (c) the segmentation in
15 best curves and (d) the longest shape modeling both left
and right road boundaries with extended parameters using
tracking.

ing consistent edgels. The consistency depends upon
proximity and alignment of both edgels.

e Graph Searching: The distance between an edgel
and both curves szers and spigne, is the minimal dis-
tance of this edgel to each of these curves. Then
any edgel is associated to the curve with the lowest
distance for recursive update of A parameters. By
choosing such a distance between an underlying lane
boundary and an edgel, we allow Least-Squares min-
imization with respect to the shape parameters. Thus,
we directly apply recursive Least-Squares theory, i.e
the main property upon which Kalman filtering is based.
Recursive fitting is used with great advantage during
the graph searching to perform fast pruning. The idea
is to keep not only the best assumption arriving at the
current node, such as in dynamic programming, but
an ordered list of the b best assumptions. An assump-
tion is here an edgel subset represented by its under-
lying shape parameters.

This algorithm can be applied using the shape parame-
ters A = (a;) or the extended ones A = (a;,w). Fig. 1
illustrates the process: the original image (a) is converted
into a list of edgels (b). In (c), we display the 15 longest
curves estimated independently. We see that even if the left
side of the lane is correctly extracted, the right side is not
long enough with respect to the pedestrian crossing mark-
ings and therefore is not extracted. Whereas by using in (d)
the extended shape parameters, i.e the lane boundaries are a
pair of curves, the lane boundaries are extracted as the first
longest pair of curves having time consistency, as described
next.

3. DYNAMIC TRACKING

3.1. Initializing by Bias Towardsa Simpler Shape

Fig. 2. Recursive fitting with an increasing number of
edgels (1, 2, 3, 9, 11, and 20 respectively) by parallel pair
of curves of degree 5. There is 7 parameters for this kind of
shape. When the number of edgel is too small to constrain
enough the shape parameters, the result is biased towards
parallel lines.

In the first steps of the graph searching, under-constrained
fitting of parametrized curves is performed on small set-
s of edgels. When an edgel set contains less edgels than
the degree of freedom of the fit, instabilities occur. But
the graph building requires implicitly the initialization of
fitting parameters Aq and covariance matrix K for each s-
ingle edgel. Following the Kalman’s theory, by choosing
these initial values, we have the chance to control the a pri-
ori information on the possible shapes and locations of the
searched curves.

Mainly, the choice of a specific Ag and K, depends on
the application context. For instance, for the recognition
of road boundaries shape in the first image of a video se-

quence, we set Ag = (0,...,0,u), where u is the width of
a standard lane, and K equals a diagonal matrix with di-
agonal (0,v,3,...,5,v). The value of v is chosen to be

large enough to allow the shape to be able to deform and
thus fit the provided data. v is the a priori variance of the
lane width w, the last shape parameter. There is zero for
the a priori variances of ag, since we want the fitting to be
invariant to a y translation of the road boundaries. We chose
decreasing a priori variances for a; parameters, because we
want to a priori bias the resulting shape towards a lower de-
gree shape such as a pair of converging lines rather than a
pair of higher degree curves.

In Fig 2, the intermediate fits illustrates how the fitting,
and thus the recognition, is biased towards parallel lower
degree polynomial. When the data does not contain enough
information for accurate estimates, the algorithm fits the da-
ta set by two curves close to two parallel lines. Notice the
robustness of the fitting to the bad initialization of the lane



width w.

Lower are the variances in Ky, i.e better is our confi-
dence in the a priori information, more the fitting error e #;
discriminates from edgels close to Aq to edgels far away.
As a consequence, better is the confidence, lower can be the
number b of best assumptions we need to keep at each node
during the graph searching, and thus faster is the algorith-
m. This leads to efficient dynamic tracking of shapes within
rather complicated class of shapes.

3.2. Time consistency

Fig. 3. Recursive fitting with an increasing number of points
by parallel pair of curves of degree 5. The used a priori
information is a translated version of the searched curves
(to be compared to Fig. 2).

Let ¢ being the time index of the current image, we as-
sume to know parameters A; 1 and covariance matrix K; 1
of the shape in the previous image. From A; ; and K; 1,
we want the algorithm to search a shape at time ¢ in a lo-
cation close to and with a shape similar to the one at time
t — 1. Fig 3 shows how using previously detected curves
the algorithm converges close to the optimal solution when
only two edgels are processed.

When a dynamic model of the vehicle is known, the ini-
tialization of Ay and K can be obtained using predictions
for A; and K;. Contrary, when this model is unknown, a
Principal component analysis can be performed on the pa-
rameters obtained from pre-processed videos of road lane-
markings. This allows a learning on how the shape is usu-
ally moving and deforming. This is used then to set K to
a rescaled version of K,_;, where scaling is applied only in
the directions of main variation of the curves parameters.

This initialization introduces not only a bias toward the
previous extracted shapes, but will also add a priori infor-
mation on the area where to search for edgels. We are in
fact implicitly focusing the search in areas where interest-
ing edgels has a high probability to be found, and therefore
we speed up the searching. This allows the process to run in
a reasonable time on rather complicated images and permits
efficient simultaneous recognition and tracking.

Fig. 4 shows tracking results of road boundaries in im-
ages with light spots or with holes in the lane-markings. In
Fig. 1 computation time on a Pentium 200Mhz, 32Mo are:
(b) 0.04s for the edgel set, (c) 1s for the best 15 curves with-
out tracking, (d) 0.3s for best pair left and right boundaries
with tracking.

(©) (d)

Fig. 4. (a) (c): the largest pair of left and right road bound-
aries is tracked in 40 images. (b) (d): one of the processed
image where light spots and shadows may induce recogni-
tion difficulties.

4. CONCLUSION

We were able to merge the tracking with a recognition algo-
rithm which ensures that the largest data set is matched with
the parametric model of the target. On one hand, the use
of extended parameters increases the searching complexity,
but, on the other hand, the use of a priori information from
the tracking allows us to retrieve the lane boundaries as the
firstly extracted pair of curves. The proposed approach may
provide a useful framework in other contexts and we are
currently working on extending it even more for tracking
and recognizing closed curves in images.
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