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ABSTRACT

In this paper we propose a novel approach of the two-image

alignment problem based on a functional representation of

images. This allows us to derive a one-to-several correspon-

dence, multi-scale algorithm. At the same time, it also for-

malizes the problem as a robust estimation problem between

possible matches. We then derive an accurate, robust and

faster version for the alignment of edge images. The proposed

algorithm is developed and tested in the context of off-line

longitudinal road profile reconstruction from stereo images.

Index Terms— Image Alignment, Registration, Robust

estimation, Multi-scale, Stereovision, 3D Reconstruction, Road

reconstruction.

1. INTRODUCTION

In the field of automotive applications, accurate and robust

3D road reconstruction is a key point for localizing a vehicle

with respect to other vehicles and obstacles. In particular, it

is required for long-range detection, where the usual planar-

road assumption is not valid. It is also of main importance for

building more accurate road maps.

The problem of accurate road reconstruction for obstacles

detection was tackled as in [1] using an intermediate local re-

construction of images edges in the (u, v, disparity) space
also used in [2]. We propose here a new, direct approach for

3D road reconstruction from stereo pairs considered as an im-

age registration problem under an unknown, parametric road

model. The proposed approach is more robust and more accu-

rate since it globally accounts for all the information at hand,

i.e. the left and right edge images. Moreover, the problem

being set in a robust estimation framework, the approximate

covariance matrix of the estimate can be obtained and used as

an inverse confidence matrix, which is of main importance in

practical applications [3].

The proposed alignment algorithm is a particular case of

non-rigid registration using a parametric model selected to
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fit road profiles as well as possible. There exists many im-

age alignment techniques, see [4] for a survey. Unlike many

existing algorithms, the one we propose here does not rely

on any Taylor expansion but implements an exact optimiza-

tion. This leads to improved convergence properties. More-

over, our algorithm is based on one-to-several rather than one-

to-one correspondences. This strategy outperforms the well-

known Iterative Closest Point (ICP) algorithm , as experimen-

tally demonstrated in [5]. For solving the minimization, a

multi-resolution strategy is used to converge to an interesting

local minimum, in the spirit of [5, 6]. Finally, the proposed

algorithm can be seen as an easier-to-derive and more flexible

generalization of the approach of [5].

This paper is structured as follows: we first present the

proposed parametric road model (Sec. 2), and in Sec. 3, we

derive an algorithm for estimating the model parameters from

a stereo pair. In Sec. 4, the road model is extended to take into

account the roll angle of the vehicle. Finally in Sec. 5, we

present experiments that assess the accuracy and robustness

of the proposed alignment algorithm.

2. PARAMETRIC ROADMODEL

We assume a rectified stereo-vision geometry. The image co-

ordinates of a 3D point of the scene, with coordinates (xv, yv, zv)
in the reference system of the vehicle, are:
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(1)

where (u, v) are coordinates within the left image, (u′, v′)
within the right image, αu, α

′

u, αv , α
′

v , u0, u
′

0, v0, v
′

0 are the

intrinsic parameters of the two cameras, b the stereo-vision

base, h the height of the cameras, and θ their pitch angle, see

Fig. 1.

In practice, the left and right views mostly contain the

image of the road. The shape of the road in front of the vehicle

defines a mapping between the two images. The proposed

approach consists of aligning the left image with the right one
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Fig. 1. Stereo geometry and road model.

consistently with an unknown, parametric road model. For a

planar road model, i.e. zv = 0, it is easy to show from (1), that
the obtained mapping can be parametrized as u′ = u + a0 +
a1v and v′ = v, where a0 and a1 are related to the intrinsic

cameras parameters as well as to the position and orientation

of the road plane. The observed road is not always planar,

however. To tackle longitudinal variations of the road, we

extend the previous mapping as:

u′ = u + a0 + a1v + · · · + anvn = u + AtV (v)
v′ = v

}

(2)

where V (v) = (1, v, v2, · · · , vn)t is the vector of monomials

and A = (a0, · · · , an) is the vector of (unknown) parameters
related to the longitudinal road profile. We experimented sev-

eral possible models of the profile, and it appears that a poly-

nomial curve of degree n is convenient enough, even though

other functions might be considered as well. The advantage

of the proposed parametric road model is its linearity with re-

spect to the parameters, which allows us to derive without any

approximation the algorithm described in the next section.

3. IMAGE ALIGNMENT FOR ROAD PROFILE

RECONSTRUCTION

The two-image alignment problem is classically set as the

minimization w.r.t. the mapping parameters of the squared

errors between the left image Il after alignment, and the right

image Ir which is used as a reference. The first key prob-

lem within this approach is that images are discrete. It is thus

necessary to interpolate the image Il. Thanks to rectification,

the interpolation must only be performed along the u axis.

The second key problem is that the optimization criterion may

have flat areas, which prevents gradient descent or other usual

numerical algorithms from converging. To bypass these prob-

lems, we propose to represent the digital right image Ir(i, j)
as the continuous function along u:

fr(u, j) =
∑

i

Ir(i, j)e
−( i−u

s
)2

where s is a scale parameter. After mapping, we similarly

interpolate the digital left image Il(k, j):

fl(u, j) =
∑

k

Il(k, l)e−(
k+AtV (j)−u

s
)2

Now, the squared error between the two images is given by:

e(A) =
1

2

∑

j

∫

u

(fl(u, j) − fr(u, j))2du (3)

By expanding the square under the integral, the error e(A)
can be simplified by forgetting the additive and multiplicative

constants and written as minus the correlation of fl with fr.

After substitution of the expressions of fl and fr, expansion

and integration, a simpler expression of e(A) is derived:

e(A) = −
∑

i,j,k

Il(i, j)Ir(k, j)e−
1

2s2
(k+AtV (j)−i)2 (4)

To minimize (4), with respect to A, we take advantage of the

half-quadratic approach [7, 8] to derive an iterative algorithm

without any Taylor expansion. Using [3] with φ(t) = −e−t,

we check that φ fulfills the three required hypotheses: φ is

defined and continuous on [0,+∞[ as well as its first and sec-
ond derivatives, φ is increasing and concave. Therefore the

classical Kuhn and Tucker’s theorem can be applied after in-

troducing auxiliary variables, and the alternate minimization

of the dual function leads to following iterative reweighted

least-squares algorithm:

1. Initialize A0, and set p = 1,

2. For all indexes (i, j, k), compute the auxiliary variable:

wi,j,k =
1

2s2
(k + At

p−1V (j) − i)2

and the Lagrange coefficient:

λi,j,k = Il(i, j)Ir(k, j)φ′(wi,j,k)

3. Solve the linear system with respect to Ap:

∑

i,j,k

λi,j,kV (j)V (j)tAp =
∑

i,j,k

λi,j,k(i − k)V (j)

4. If ‖Ap − Ap−1‖ > ǫ, increment p, and go to 2, else

A = Ap.



More details on how the algorithm is formally derived can

be found in [3]. Also, by applying results from [3], the con-

vergence towards a local minimum is ensured. Moreover, by

varying parameter s, a multi-scale strategy can readily be im-

plemented to achieve convergence to a more interesting local

minimum. This approach, called Graduated Non Convexity

(GNC), consists of, at first, enforcing local convexity on the

data using a large value of s. Then, a sequence of solutions

with decreasing s, is computed in continuation, as in [6, 5].

It is important to notice that, in the obtained algorithm, the

matching is one-to-several rather than one-to-one. As exper-

imented in [5], one-to-several correspondence provides bet-

ter convergence towards an interesting local minimum, and

thus outperforms ICP or other one-to-one correspondence al-

gorithms. This improved convergence property is detrimen-

tal in terms of computational burden. To avoid penalizing the

proposed algorithm, we perform a matching decimation in the

spirit of [5]: correspondences such as k+AtV (j)−i is larger

than 3s are discarded. This decimation is performed only one

time at each scale without a significant lost of accuracy.

There are several ways to reduce the complexity of the

proposed algorithm. For example, noticing that regions of

constant intensity do not help the alignment process, it is

faster to align edge maps rather than the original intensity im-

ages: we only have to work on possible edge matches (i, k)
for each line j. This leads to drastic reduction in complexity

without lost of accuracy, as shown in Sec. 5. With edge maps,

we can thus substitute the following expression to (4):

e(A) =
∑

(i,k),j

d((i, k), j)φ(
1

2s2
(k + AtV (j) − i)2) (5)

where d((i, k), j) is an extra factor that is introduced to take
into account the local similarity in terms of gray or color gra-

dients between the two matched edge pixels (i, j) and (k, j).
The proposed algorithm can thus be rewritten in a much more

efficient way: at first the list of all possible matches is build

for a scale s, and second the weights and Ap are refined it-

eratively with λi,j,k = d((i, k), j)φ′(wi,j,k). The main dif-
ference compared with [5] is that the proposed algorithm is

much more general in the choice of the weight λi,j,k. It is

not reduced to the use of Gaussian weights and thus other ro-

bust functions may be used, which opens the door to using

the proposed alignment algorithm in many applications with

different kinds of perturbations.

4. ROLL ANGLE

Using the road model introduced in Sec. 2, we observed on

several stereo pairs, situations in which one lane of the road

is correctly aligned, while the reverse one is aligned with a

few pixels bias, as shown on the rightmost part of Fig. 2(a).

This is due to the fact that the roll angle of the vehicle is set to

zero in the model. We now propose an extended road model

featuring an extra parameter that accounts for the roll angle.

(a) (b)

Fig. 2. Alignment without (a) and with (b) roll angle estima-

tion. Left edges are in red and the aligned right edges in black

on this image crop.

When the road is planar, the roll slope λ can be introduced

in (1) by setting zv = λxv . After this substitution, we simply

derive the expressions of xv and yv as functions of u,u
′, and v

from the first two equations of (1). Substituting these expres-

sions in the last equation of (1) and simplifying, we obtain:

u′ = u + a0 + a1v + au

v′ = v

}

(6)

where a accounts for the roll angle. Height variations of the

road can now be introduced, in a similar way as in Sec. 2. The

introduction of the roll angle still yields a mapping which is

linear with respect to the unknown parameters. The algorithm

proposed in Sec. 3 thus readily applies by changing At into

(At, a) and V t(j) into (V t(j), u). The result obtained using
the model including the roll angle on the same image is shown

in Fig. 2(b). Notice how the alignment is improved for the

edges on the right side of Fig. 2(b).

5. EXPERIMENTS

The proposed algorithm can be interpreted as a robust estima-

tion algorithm on the matched pair points. The function that

plays the role of the M-estimator is φ which can be chosen

to achieve the maximum breakdown point of 50% outliers,
see [9]. Fig. 3 illustrates how robust the algorithm is in pres-

ence of many outliers due to vehicles, houses or trees. In the

first column, a planar model is used, while in the second col-

umn it is a 6th degree polynomial model. The advantage of

the non-planar model is easily noticeable in Fig. 3.

To assess the accuracy of the alignment algorithm, we run

experiments on synthetic images for different values of the

transformation parameters, see Fig. 4. Note that the obtained

accuracy is better using edge images than using gray level im-

ages. The correlation using edges is 96% with a bias of about
half a pixel. Typically, multi-scale alignment is performed in

less than one hundred iterations and in a few seconds.

Finally, we address the problem of road profile recon-

struction. We process a sequence of 330 stereo pairs taken

at evenly spaced intervals along a 1650 meter long road. The

true profile, obtained from the map is shown in blue on Fig. 5.



Fig. 3. Stereo registration using a planar model (left column)

and with a 6th degree polynomial (right column). The roll

angle correction is incorporated. Black edges are the left

edges mapped in the right image coordinates. Right edges

are shown in red.
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Fig. 4. Estimated versus true horizon using gray level images

(a) or edge images (b).

In red are shown 6 examples of local road profiles, each one

resulting from the application of the algorithm on a particu-

lar stereo pair. Note that there is no integration of the profiles

along the road path: they are treated individually. Their initial

slope thus depends on the local orientation of the vehicle with

respect to the road, which is unknown. Note, however that the

relative shape of the local profiles is correct in all cases.

6. CONCLUSION

In this paper we derived a new algorithm for two-image align-

ment where one-to-several correspondences naturally arise and

which is multi-scale. These two properties are of a main im-

portance to achieve robustness of the alignment algorithm.

The original formulation being relatively time-consuming, we

propose a faster version by considering edge images. The

alignment procedure is thus interpreted as a robust estimation

over all possible edge pixels matches. Experimental results
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Fig. 5. (a) Map of the road ( c© IGN), (b) its longitudinal pro-
file (in blue) and examples of estimated (relative) local road

profiles (in red), see text.

show that this strategy is beneficial in terms of accuracy. We

used with success this alignment algorithm for off-line longi-

tudinal road profiles reconstruction from stereo images. Fi-

nally, the proposed approach is flexible enough to be easily

extended to many other alignment problems.
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