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ABSTRACT

Various interest point and corner definitions were proposed in

the past with associated detection algorithms. We propose an

intuitive and novel detection algorithm for finding the loca-

tion of such features in an image. The detection is based on

the edges in the original image. Interest points are detected

as accumulation points where several edge tangent lines in a

neighborhood are crossing. Edge connectivity is not used and

thus detected interest points are robust to partial edges, out-

liers and edge extraction failures at junctions. One advantage

of the approach is that detected interest points are not shifted

in location when the original image is smoothed compared

with other approaches. Experiments performed on Oxford

and Cambridge reference databases allow us to show that the

proposed detection algorithm performs better than 9 existing

interest point detectors in terms of repeatability from multiple

camera views.

Index Terms— Interest point, corner, feature point, de-

tection, extraction, accumulation transform, repeatability,

edges.

1. INTRODUCTION

Interest points and interest point neighborhoods are highly

used features to summarize an image into a very reduced set

of information. For instance, interest points are of great im-

portance for object tracking, object recognition, camera cali-

bration and image indexing.

Given an image of a complex scene, it is hard for peo-

ple to tell where the corners are. The selected positions dif-

fer from one person to another. This explains why several

corner definitions, applying to images, were proposed in the

past. Due to the difficulty to agree on reference corner po-

sitions, corner detection algorithms were difficult to rate [1].

Evaluation based on the repeatability of the detected points in

different views [2, 3] led to the introduction of interest points

and brought reliable results.

Two classes of interest point detectors can be identified:

pixel- and edge-based approaches. A recent example of pixel-

based algorithm is [4], and an edge-based algorithm is de-
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Fig. 1. Extracted edges, accumulation of tangent line cross-

ings, and detected interest points in red superimposed to the

original image. Used parameters are s = 1, gm = 32,
dm = 16 and αm = 0.2.

scribed in [5]. The here proposed algorithm is based on ac-

cumulation and thus belongs to the second class. However,

contrary to most edge-based algorithms, it does not rely on

edge connectivity, so it is more robust to missing edgels (edge

elements), outliers and edge extraction failures at junctions.

Another advantage lies in its ability to maintain accuracy lo-

cation even when the original image is smoothed. The pro-

posed algorithm can be used in many tasks, for instance for

road sign detection [6].

After the detailed description of the interest point detec-

tion algorithm based on accumulation, a comparative eval-

uation with state of the art interest point detectors is given,

showing the benefit of the proposed algorithm.

2. DETECTION BY ACCUMULATION

2.1. Definition of interest points location

Our idea is to define interest points as points where several

tangent lines to the edges are crossing. Our definition is based

on the image edges and thus requires edge extraction as a

first step. But contrary to many existing methods based on

edges, such as [5], we do not want to use the edge connectiv-

ity property. Indeed, edge connectivity is often compromised

by various perturbations such as noise, occlusion, outliers and

smoothing. The second step is an accumulation step over se-

lected pairs of edgels. Third step allows finding the inter-

est point locations and eventually sorting the obtained interest

points in decreasing order of strength.

With the previous definition, an interest point is detected

at its correct position, even when the corner is smoothed or



truncated. This is illustrated at the top and bottom right cor-

ners of the images in Fig. 1. It is also important to notice

that when intensity smoothing is applied on the image, a de-

tected interest point is not affected by a shift in position like

in many other approaches. These interesting properties of ro-

bustness and accuracy are a consequence of the accumulation

of evidence on the crossing of edge tangent lines. In addition

to the missing edgels robustness, the process is also robust to

outliers as illustrated in the top left corner of the images in

Fig. 1. Notice that points not usually considered as corners

are also detected as interest points. For instance, in the bot-

tom left interest point of the images in Fig. 1, two interest

points are detected as the crossing of horizontal and vertical

edges even though the edges do not actually intersect.

2.2. Edge extraction

Whatever the chosen edge extraction algorithm, it must pro-

vide a set of edgels. Here, an edgel is a 2D point position Pi

in pixels with the gradient vectorGi perpendicular to the edge

at Pi. Usually, the edge extraction algorithm is parameterized

by the kernel size s of the filter used to reduce the noise on

image intensities. Edge detection is applied on the original

image after normalization between [0, 255]. In practice, we

use Deriche edge detector [7] which gives the horizontal and

vertical components of the gradient at each pixel position in

the original image I(P ). Then, a no-maximum suppression

is applied to obtain edges. Edgels with a gradient norm lower

than a threshold gm are discarded. This threshold allows re-

moving edges in noisy areas and reducing the number of edgel

pairs used in the next step. The output of the first step is thus

a set of n edgels (Pi, Gi).

2.3. Accumulation over edgel pairs

To find the points where several tangent lines are crossing,

pairs of edgels with indexes i and j are selected. To reduce

the set of possibilities and because interest points are defined

locally, only pairs of edgels at a distance dij lower than dm are

selected. Moreover, to avoid detecting interest points along

a low curvature edge, a selection is performed with respect

to the angle between gradient vector Gi and the opposite of

gradient vector Gj . We denote this angle by αij , see Fig. 2,

and it must be within [−π
2
, π
2
] for selected edgel pairs. As

a consequence, interest points with obtuse angle will not be

detected. To take into account the estimation error on gradient

angles, the interval [−π
2
, π
2
] becomes [−π

2
− αm, π

2
+ αm]

where αm is the assumed maximum error on gradient angles.

For a pair of selected edgels (Pi, Gi) and (Pj , Gj), we
compute, when it exists, the crossing point Cij of the two tan-

gent lines of the edges going through Pi and Pj respectively,

see Fig. 2. From the equation of the tangent lines, we deduce

two equations on the position Cij : Gt
i(Cij − Pi) = 0 and

Gt
j(Cij − Pj) = 0, where t denotes the transpose operator.

Ci,j

Pj

di,j

Pi

Gi

αi,j

Gj

Fig. 2. Accumulation at the crossing Ci,j of the two tangent

lines going through Pi and Pj with normals Gi and Gj re-

spectively.

Fig. 3. Detected interest points in red superimposed to the

original image when αm = 0.2, left and αm = 1.3, right.
Interest points with obtuse angles are not detected in the left

image and are detected in the right image. The other parame-

ters are s = 1, gm = 32, dm = 16.

The crossing point Cij is thus obtained as:

Cij = (Gi Gj)
−t

(
Gt

iPi

Gt
jPj

)
(1)

The positions of Ci,j over the selected pairs of edgels are

accumulated in a 2D histogram h(P ) the size of which is the

same as that of the original image I(P ). Each vote at position
Ci,j can be simply an increment by one. However, to favor

edges with strong gradients over edges with low gradients,

we use a vote with the value
√
‖Gi‖‖Gj‖. This value is the

logarithm average of the gradient norms ‖Gi‖ and ‖Gj‖. In
summary, the 2D histogram h(P ) can be formally described

as:

h(P )=
n∑

i=1

n∑

j=1

√
‖Gi‖‖Gj‖1I‖Pi−Pj‖<dm

1I|αi,j |<
π
2
+αm

1IP=Cij

(2)

where 1I is the indicator function (if x is true 1Ix = 1 else 0),
αi,j = Ĝi, Gj − π, and Cij is given by (1).



2.4. Local maxima

After the 2D histogram h(P ) is obtained, the positions of lo-
cal maxima give the interest point locations. A local maxi-

mum in the 2D histogram h is a pixel position P where h(P )
is higher than or equal to the values at its eight neighbors. The

detected interest points can be sorted using the values of h at

the maximum. TheN first sorted points can be selected as the

detected interest points. An alternative to sorting is simply to

remove the locations where the value of h is smaller than a

threshold.

3. EXPERIMENTS

3.1. Parameters selection

The gradient norm threshold gm used during edge extraction

is usually between 10 and 40 gray levels, i.e between 4% and

16% of the maximum intensity of the input image. The higher

the value of gm, the faster the interest point detection algo-

rithm. The scale parameter s used to filter the image during

edge extraction is the main parameter of the detection algo-

rithm by accumulation since it specifies the scale at which

interest points are detected. In noisy or randomly textured im-

ages, a large value of s should be preferred. On the contrary,

in clean detailed images, a small value of s should suffice.

Usually s is between 0.3 and 3 pixels. The maximum dis-

tance dm used for edgel pairs selection can be used to change

the ordering of the detected interest points. But the higher the

value of dm, the higher the number of edgel pairs and thus the

slower the interest point detection algorithm. Moreover, dm
must not be too small to allow stable interest points detection

first. In practice, dm is set between 2% and 8% of the input

image size. The last parameter αm does not play an important

role and is usually set to 0.2 rad. It is also introduced in the

algorithm to allow, when it is necessary, extracting interest

points with obtuse angles as well as interest points with acute

angles. In the left and right images of Fig. 3, the extracted

interest points are shown in red, left with αm = 0.2 rad and

right with αm = 1.3 rad. With αm = 0.2, only acute inter-

est points are detected; when with αm = 1.3 both acute and

obtuse interest points are detected. The price to pay for the

detection of obtuse interest points is an increasing number of

low stability interest points along edges with small curvatures.

The original image comes from1, see [1].

3.2. Comparison with other interest point detectors

For the evaluation of the interest point detection algorithm by

accumulation in comparison with state of the art interest point

detectors, we follow exactly the evaluation scheme described

in details in [4], similar in its principle to the one described

in [2]. The evaluation is based on the ǫ-repeatability which

1http://www.ee.surrey.ac.uk/CVSSP/demos/corners/originals.html

is defined as the ratio of the number of interest points repeat-

edly detected in a pair of images (of the same scene) over

the number of interest points appearing in both images. ǫ is

the maximum error accepted on the interest point location

(typically ǫ = 5 pixels). As in [4], two image databases

with ground-truth mapping between views are used: the

Cambridge database2 and the Oxford database3. The Oxford

database consists in 8 sequences of 5 pairs with a homog-

raphy mapping between two views, whereas the Cambridge

database consists in 3 sequences of 210, 182 and 56 pairs

with a 3D mapping between two views. For algorithm com-

parison, the repeatability is plotted versus the number of

detected interest points for different algorithms. The algo-

rithms parameters are selected by optimizing the results on

the ”bark” dataset, then the same values are applied to other

datasets. Only the scale s of the smoothing is modified for the

Cambridge database due to better registration between views

compared with the Oxford database.
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A: Box dataset
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B: Maze dataset
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C: Bas-relief dataset
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Fig. 4. Comparison of the repeatability curves of different

interest point detectors on the 3 sequences of the Cambridge

database2. Used parameters are s = 1

3
, gm = 32, dm = 16

and αm = 0.2.

The repeatability curves obtained in [4] are shown for

Harris, Harris-Laplace, Shi-Tomasi, SUSAN, DoG (used in

Sift), FAST-9 and FAST-ER algorithms, along with the curve

obtained when interest points are randomly sampled in the

image. We added the two blue curves which are for the Radial

Symmetry Transform [8] (RST) and the proposed accumula-

tion based interest point detection algorithm (Accum). The

results obtained in Fig. 4 on the Cambridge database equal

those of the best FAST-9 and FAST-ER algorithms which are

based on learning on this database, with the advantage that

the algorithm based on accumulation is particularly simple to

implement and does not need a learning step.

2http://svr-www.eng.cam.ac.uk/˜er258/work/datasets.html
3http://www.robots.ox.ac.uk/˜vgg/data/data-aff.html
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B: Bikes dataset
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C: Boat dataset
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D: Graffiti dataset
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E: Leuven dataset
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F: Trees dataset
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G: UBC dataset
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H: Wall dataset

Fig. 5. Comparison of the repeatability curves of different

interest point detectors on the 8 sequences of the Oxford

database3. The curve keys are shown in Fig. 4. Used pa-

rameters are s = 2.5, gm = 32, dm = 16 and αm = 0.2.

Compared with the other algorithms, ours scores are

higher in 6 sequences over the 8 of the Oxford database,

see Fig. 5. In the Leuven sequence, where gamma transfor-

mations are applied on the image intensities, our results are

within the average range of the other results. This indicates

a lack of robustness to gamma transformations due to the

gm gradient threshold. This can be fixed by adding a pre-

processing step enforcing normalization of the average of the

logarithm of the image intensity. In the Wall sequence, where

images are taken with various viewing angles, our results are

similar to the best results despite a large zoom with a constant

smoothing scale s.

Average processing time for interest point detection with

sorting is 624ms on the Oxford images (max size 1000×700)
and 417 ms on the Cambridge images (768 × 576) using a

1.1GHz Intel Core 2 Duo PC. Thus, it is similar in speed to

the Harris detector.

4. CONCLUSION

We described an interest point detection algorithm based on

the accumulation of evidence on the position of the crossing

of pairs of edge tangent lines. This algorithm uses edges but

is robust to missing edgels and outliers. In the comparative

experiments, our interest point detection algorithm shows en-

hanced results over 9 state of the art algorithms. We point

out that the scale of the filter during the edge extraction is

the important parameter related to the scale at which interest

points are extracted. We thus plan to extend our algorithm by

introducing scale self estimation.
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