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Abstract

This paper outlines a geometric parameterization of 2D
curves where the parameterization is in terms of geometric
invariants and terms that determine an intrinsic coordinate
system. Thus, we present a new approach to handle two
fundamental problems: single-computation alignment and
recognition of 2D shapes under affine transformations. The
approach is model-based, and every shape is first fit by an
implicit fourth degree (quartic) polynomial. Based on the
decomposition of this equation into three covariant conics,
we are able to define a unique intrinsic reference system that
incorporates usable alignment information contained in the
implicit polynomial representation, a complete set of geo-
metric invariants, and thus an associated canonical form
for a quartic. This representation permits shape recogni-
tion based on 8 affine invariants. This is illustrated in ex-
periments with real data sets.

1. Introduction

Implicit polynomial curves (i.e IP or algebraic curves)
have proven to be powerful shape representations in model-
based vision to handle the alignment and recognition of 2D
shapes [2, 4]. To deal with affine transformations, we uti-
lize the fact that 2D IPs can be decomposed into covariant
conics. This means that when an affine transformation �
is applied to the IP, every conic from the decomposition is
transformed by � . The goal of the decomposition is to sim-
plify the IP description by reduction to the well known case
of conics. This implies an object-based canonical reference
system (consisting of an intrinsic coordinate center and an
intrinsic coordinate orientation) and a full set of geometric
invariants.

Euclidean transformations can be similarly handled as a
special affine case. More robust estimators and more de-
tailed analysis of the Euclidean case is presented in [3] with

the use of the complex representation of a 2D curve. In this
paper, we focus our attention on affine transformations and
quartics, but extensions of the approach to higher degrees
can be developed.

In section 2, we outline how one can obtain quartic
curves from a given raw data set by using a fitting algorithm.
In section 3, we show how to decompose a quartic into three
covariant conics. In section 4, we use our decomposition to
obtain an affine canonical form for any quartic. Thus, affine
alignment is processed in a single computation. We also
exhibit a complete set of invariants under affine transfor-
mations with a natural distance measure on every invariant,
which allows us to do recognition tasks in an efficient and
optimal way. Finally we present some experimental results
which illustrate robustness to noise and missing data in the
estimation of invariants and our intrinsic reference system.

2. Shape Modeling with Quartics

A quartic is an algebraic curve of degree � in the plane,
which is defined with Cartesian coordinates ���	��
� by the IP
equation:
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The number of polynomial coefficients �*��+-,.� ��/ +10�, /!� is 2�3 .
However, since the zero set of

�.� ������
�4�5( is unaffected
by a multiplication of

�6� ���	��
7�4�8( by a non-zero scalar,
a quartic has 2�� independent degrees of freedom. The ho-
mogeneous polynomial 9 � ���	��
� of degree � in

��� ���	��
� is
called the leading form of

� �
. A conic, defined by a poly-

nomial of degree : has 3 independent degrees of freedom.
There are different kinds of quartics depending on the

number of real roots of ;<�>=��?�@
�A
�
9 � ���	��
� , =B�DCE (see

section 3.1). There are two different types of non-singular
conics: hyperbolas and ellipses. The leading form of a quar-



tic can imply 4 asymptotes, 2 asymptotes, and no asymp-
totes in which case the quartic curve is bounded. For some
quartics, a root in the leading form can be repeated, in which
case it is called singular.

Figure 1. The data set and its associated zero set
obtained with the 3L IP fitting algorithm.

To align and compare two shapes described by their
boundaries, input data sets are assumed to be sets of points
along boundaries (see the dotted points in Fig. 1). Before
we can consider alignment and recognition, we must deter-
mine a quartic polynomial whose zero set approximates the
data points. For this we use the 3-level (3L) fitting algo-
rithm [1] which generates a robust and stable global repre-
sentation. 3L fitting is numerically stable and repeatable,
with respect to Euclidean transformations of the data set,
and robust to noise and a moderate percentage of missing
data. Fig. 1 illustrates the result of 3L fitting of two differ-
ent objects by quartic IP curves (the solid lines).

3. Quartic Decomposition in Covariant Conics

Our aim in this section, as first formulated in [5], is to
rewrite the polynomial function in (1) as the product of two
conics, plus a third conic, namely:��� ���	��
��� � �.���	��
� ���� ���	��
� � ������ ���	��
7�
The proposed decomposition is unique for bounded curves
and the three obtained conics are covariant under affine
transformations.

3.1. The Leading Form

With the new variable = � C E , the homogeneous leading
form is rewritten as the fourth degree polynomial � ��� =

� �
�$��� = �

�
����� = �

�
�!� ��=

�
� ��� . This polynomial can always

be factored as the product of two real second degree poly-
nomials. Consequently:� � ������
��� � ��� ��� �
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where we have assumed that � ������ ( . Notice that the lead-
ing form decomposition is unique for polynomials with : or
( asymptotes. For quartics with 4 asymptotes, the real roots
can be coupled three different ways.

3.2. Third Degree Homogeneous terms

We now want to eliminate the third degree homoge-
neous terms by introducing linear terms

�
� � �

�� � � 
 and� � � � � ��� �� � 
 in each homogeneous quadratic factor in (2).
After expansion, we observe that the coefficients of the third
order terms are linear functions of

�
� � ,

� � � , � � � � and
� �� � .

Consequently, we can choose the values of these terms to
eliminate all the third order terms by solving the following
linear system:
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After this computation, the quartic polynomial is decom-
posed as:
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where the ”remainder”

�
� ������
� is of degree no more than

two:
�
� ���	��
����� � � � � � � ��� �!
 � � � � 
 � � � � � � � � � � 
 � � ��� .

Notice that the centers �>= C � = E � and � = �C � = �E � of each conic
factor � � and � �� , respectively, can be determined by solving:� 2 � �!��� �!�� � � �#" � = C= E " ��$ 2

:
� � � �� � �%" (5)

since this computation is independent of the unknown con-
stant term.

3.3. Uniqueness of the Decomposition

To express (4) as the product of two generic conics � �
and � �� , we need to introduce constant terms

� ���
and

� ����
into the two factors, respectively.

We recall that a quartic has 14 degrees of freedom, and a
conic 5. We want to decompose the quartic as the product of
two conics, plus a remainder term, which has 2 �&$B3(' :?� �
degrees of freedom. Consequently, the remainder can not be
a fully independent conic. Due to the multiplicative factor
on the remainder, � ���� has only 3 degrees of freedom.

We propose an affine invariant constraint, which has the
advantage of involving only linear computations (a non-
linear alternative can be found in [6]). Indeed, we com-
pute

� ���
and

� ���� by constraining the remainder to be a
conic with its center �*) C ��) E � at the mid-point of the line be-
tween points � = C � = E � and � = �C � = �E � . This constraint is linear
because (5) is linear as a function of the conic coefficient
when the center is given. Moreover, the coefficients of � ����
involved in this constraint are linear functions of

� ���
and� ���� .



When an affine transformation is applied to a conic, its
center is mapped by the same affine transformation, i.e
the center of a conic is an affine covariant. Consequently,
�*) C � ) E � is also a covariant of the two conic factors. This im-
plies that our constraint on the third conic is invariant under
affine transformations. With the uniqueness of the decom-
position, this property ensures that � � , � �� , and � ���� are covari-
ant conics with respect to the affine transformation applied
to

���
.

Finally, after computation of
� ���

and
� ���� , we have de-

composed every non-singular quartic as the product of two
conics � � and � �� plus a third conic � ���� , whose center is
aligned with the centers of � � and � �� . We call this the de-
composition of a quartic into three covariant conics, hence
a covariant-conics decomposition. Notice that for polyno-
mials with 2 or 0 asymptotes, our decomposition is unique.
For quartics with 4 asymptotes, 3 such decompositions ex-
ist.
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Figure 2. The quartic of the hiking boot in Fig.1
is decomposed into three covariant conics (2 ellipses
and 1 hyperbola).

Fig. 2 illustrates the unique covariant-conics decomposi-
tion of an implicit polynomial fit to the hiking boot of Fig. 2,
where one conic factor is an ellipse and the other a hyper-
bola.

4. Canonical Affine Form of Quartics

Since the conic decomposition is covariant, we have
transformed the problems of alignment and recognition of
quartics to the equivalent problems on a set of three con-
ics. We will next show how to deduce an affine intrinsic
reference system for a quartic curve, and then determine
a complete set of affine invariants by computing the Eu-
clidean invariants of the conics in the decomposition after
transformation to a canonical reference system.

4.1. Affine Intrinsic Reference System of Quartics

There is no unique affine canonical form for a conic. An
infinite number of affine transformations can change a given

ellipse to a circle, for example. Nevertheless, and it is one
of the main reasons for using quartics, it is possible to have
an affine canonical form for a quartic by using the two co-
variant conics to define an affine intrinsic reference system.

A good candidate, for the origin of this reference sys-
tem is � ) C � ) E � the center of � ���� as described in the previous
section. When the origin is known, we have to define an in-
trinsic reference system under linear transforms. First, we

define
� �

��� � � � �!��� � �� � � � " and
� � � � � � � � ��� �!��� � �!�� � �� ��� , the ma-

trices associated with the leading terms of each conic � � and� �� . These matrices are unique up to a scale factor. To define
these matrices in a unique way, we assume that each conic is
centered, and that its constant term is $?2 , before computing�

and
� � .

If a linear transform 	 is applied to the quartic, the pre-
vious two matrices become 	�
 � 	 and 	�
 � � 	 , respectively,
and the product

� � A � � becomes 	 A � � � A � � 	 . We there-
fore deduce that the eigenvalues !+ of

� � A � � are affine in-
variants and, moreover, that the eigenvectors �!+ of this ma-
trix are linearly transformed by an affine transformation of
the reference system. This eigenvector problem is equiva-
lent to the following generalized eigenvector problem:� � + �� + � � � + (6)

The two eigenvectors � � and � � , which are solutions of (6),
provide the directions of an affine intrinsic reference system
for the quartic. However, this eigenvector problem does not
always have a real solution. If the matrix

�
or
� � is positive

definite, i.e, if one of the conic factors is an ellipse, a real
solution always exists. Indeed, when

� � is positive definite,
the square root � defined by

� � ������
 exists. Conse-
quently, the problem is equivalent to finding the eigenvec-
tors ��
���+ of the symmetric matrix � A � � �4A�
 . Notice that
in this case, the length of the vectors in the intrinsic coor-
dinate system are also computed to transform � �� to a unit
circle.

When � � and � �� are two hyperbolas, the previous prop-
erties do not apply. In this case, the leading term has 4
real roots, and the decomposition is not unique. However
when roots are ordered, it is not difficult to show that real
eigenvectors always exist if the two conic factors involve
consecutive roots.

By diagonalizing the matrix
� � A � � , we have the direc-

tion of each axis of the intrinsic reference system. If we
reverse the roles of

�
and

� � , the computed eigenvectors
stay the same but the computed eigenvalues are inverted.
Then, we order the axes by first choosing the axis which
maximizes  + � ���� , where  + is the associated eigenvalue.
Moreover, if  � is less than 2 , we decide that the two el-
lipses are in reverse order. By convention, � � is defined as
the largest conic factor. Then, both lengths of the vectors of



the affine intrinsic reference system are computed to trans-
form � �� to a circle.

Therefore, we have defined the direction and the length
of every axis of the affine intrinsic reference system. We
now orient each axis through the center of the largest conic� � (see Fig. 3). After all these steps, the reference system is
uniquely defined for quartics with zero or two asymptotes.

4.2. Affine Invariants of Quartics

world reference system

���������	��
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��� �

� � ��
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Figure 3. An example of a complete affine invariants
set of a quartic.

When an intrinsic reference system has been found, we
apply the inverse of the affine transformation to map the
origin of the reference system to ��(%��(7� and the coordinate
orientations to orthogonal unit vectors. After this transfor-
mation, the Euclidean invariants of the set of 3 conics are
affine invariants of the original quartic.

In this case, however, not all of the Euclidean invariants
are useful. We want a largest independent subset. As shown
in Fig. 3, a possible set of geometric affine invariants is:

� ) � , ) � : squared lengths of minor and major axes of
the conic � � (positive for ellipses and negative for hy-
perbolas) in the intrinsic reference system,

� � = C � = E � the position of the center of the conic � � ,
� ) ���� and ) ���� the squared lengths of minor and major axis

of the central conic � ���� ,

��� ��� the angle of the major axis of � ���� ,

� and the relative weight ) between the conic factors
and the central one.

The number of geometric invariants is then � . An affine
transformation has � degrees of freedom. The geometric in-
variant set is then complete, since �

�
� � 2 � , which is

equal to the number of quartic degrees of freedom.The in-
variants obtained are different from the classical algebraic

invariants, because they are not restricted to being rational
and polynomial functions of the polynomial coefficients,
but rather are general functions involving roots and trigono-
metric functions. As a consequence, we call this new set
of invariants geometric invariants. We want to emphasize
the fact that the geometric interpretation of these invariants
implies a natural distance to compare two sets, which is fun-
damental to practical object recognition.

The unique canonical form in the affine case is:

��� ���	��
7��� ����� �� "!�#%$ A�
�&�'�() � �
��* �+ ,!%#�$ A�
�-,'�() ( $ 2��

� ��. +�/ 
�0�1 � = C � �
�

�%2 +�/ 
�031 � = E � � $54��� )7� � � � () � �� �
* � � () � �
(

$ 2���� (
(7)

with 4 �76 2 and� . +�/ 
%0312 +�/ 
%031 " �
�98;:�< � ��� $ <�=�> � ���<?=@> � ��� 8;:A< � ��� " � . ���

2 ��� "
and where the intrinsic reference system is defined by:� �


 " �
� �	� C �!� C��� E �!� E " � .B+�/ 
%0312#+�/ 
%031 " � � ) C) E "

The vectors �	�B� � �	� C � �	� E � and �!�4� � �#� C � �!� E � are the
two eigenvectors of (6).

4.3. Affine Alignment
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Figure 4. Left, the original data set of the hiking boot
and its perturbation with random Gaussian bumps of
size (CB (3 (object of size 3). Right, the original data
and with 3�D of the data missing. Then, in each case,
an affine transformation is applied on the perturbed
data set.

We have computed the variances of alignment and in-
variance errors under affine transformations with additive
blobby noise and partial occlusion, respectively (errors un-
der Euclidean transformations for the same noise and partial
occlusion are smaller). Fig. 4 is a typical example of noise
or missing data combined with an affine transformation.

Table 1 is a summary of the relative errors obtained for
the same two objects of Fig. 1. Statistics for each case are



guitar boot guitar boot� � C 6.2% 5.2% 12.2% 7.2%�	� E 7.2% 6.4% 13.1% 9.3%�!� C 4.2% 5.1% 5.8% 6.1%�!� E 5.7% 80.9% 8.7% 70.0%) C 4.8% 3.4% 7.1% 6.1%) E 2.5% 1.8% 5.8% 3.1%

Table 1. Percentage of error in the estimation of the
affine intrinsic coordinate system under (CB (3 noise
and 3AD missing data, respectively.

computed from 3( different random realizations. We ob-
served that the affine error is higher in comparison with the
Euclidean case because the fitting is not affine invariant. For
particular shapes instabilities can appears. Instabilityoccurs
for curves close to singular and for degenerate curves.

4.4. Recognition Tests

Table 2 presents the standard deviation relative to the
value of every affine invariant under a (CB (73 standard devi-
ation noise and 3AD of missing data, respectively. Due to
the way we compute the affine invariants, by applying the
inverse of the intrinsic reference system, the invariant ro-
bustness is related to the reference system robustness. The
two last columns of Table 2 show how well separated the
scatter invariants are under noise and missing data.

guitar boot guitar boot noise mis.).� 12.8% 10.8% 21.3% 17.3% 5.4 2.1) () � 7.7% 13.6% 12.3% 49.7% 5.6 8.7
= C 25.5% 16.2% 50.2% 32.3% 0.4 0.4
= E 11.8% 5.1% 26.5% 6.0% 9.7 6.7) � ��) � 11.1% 66.7% 16.2% 211% 11.3 13.6) � �
() � �� 4.4% 15.5% 5.3% 17.7% 21.6 15.8� ��� 36.4% 4.2% 39.4% 14.2% 35.6 40.3) 13.8% 43.3% 28.1% 120% 16.4 15.9

Table 2. Percentage of error in invariants under (CB (3
noise and under 3�D missing data, respectively. Two
last columns show the ratio of the distance between
the invariants of the guitar and the hiking boot over
the std. dev. of the guitar, under noise and missing
data, respectively.

There exist several configurations of the three covariant
conics that we have to handle as specific cases in the de-
composition and alignment computations. For example, the
conic factors have to be different than a circle. To define a
unique reference system, the shape must be non-symmetric.
Usually, it is possible to detect and handle these exceptions.
So in practice, and to obtain a roughly robust algorithm, we
must consider all these particular cases.

5. Conclusions

We have defined a unique intrinsic reference system and
an associated canonical form for a quartic. This result is
valid for most quartics, but not singular, degenerate or sym-
metric ones, for example, where the intrinsic reference sys-
tem is not uniquely defined.

In some tests, under a transformation of shape, because
of noise and missing data, the model curve obtained with
the 3L fitting algorithm is not always decomposed as three
conics of the same type for a shape and its transformation.
In these situations, it is not possible to apply our approach,
since the model of the original and perturbed shapes are of
different mathematical types. An alternative model-based
fitting algorithm is required for handling this problem. An-
other important improvement will be provided by an affine
invariant fitting algorithm, since the 3L fitting algorithm
used is only Euclidean invariant. More generally, a study
of the accuracy of each geometric invariant related to the
fitting process is needed.

In any case, the generalization of the given approach to
compute a complete set of invariants and an intrinsic ref-
erence system for polynomials of higher degree than 4 is
a very promising way to develop a generic framework and
some powerful tools for model-based recognition and the
alignment of 2D images.
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