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ABSTRACT
Kernel based methods such as Support Vector Machine
(SVM) have provided successful tools for solving many
recognition problems. One of the reason of this success is
the use of kernels. Positive definiteness has to be checked
for kernels to be suitable for most of these methods. For in-
stance for SVM, the use of a positive definite kernel insures
that the optimized problem is convex and thus the obtained
solution is unique. Alternative class of kernels called con-
ditionally positive definite have been studied for a long time
from the theoretical point of view and have drawn attention
from the community only in the last decade. We propose
a new kernel, named log kernel, which seems particularly
interesting for images. Moreover, we prove that this new
kernel is a conditionally positive definite kernel as well as
the power kernel. Finally, we show from experimentations
that using conditionally positive definite kernels allows us
to outperform classical positive definite kernels.

1. INTRODUCTION

Support Vector Machine (SVM) [1] is one of the latest and
most successful algorithm in computer vision. It is pro-
viding good solutions to many image recognition problems.
SVM has a solid theoretical framework [2] which helps to
analyze and understand why it works so well. The basic
idea behind SVM is to build a classifier that maximizes the
margin between positive and negative examples. Large mar-
gin classifiers have proved to yield to good generalization
capacity which means a good ability to discover the true un-
derlying data distribution. Formally, SVM algorithm boils
down to minimize quadratic problem:

W (α) = −
∑̀

i=1

αi +
1

2

∑̀

i,j=1

αiαjyiyjK(xi,xj) (1)

with respect to Kuhn-Tucker coefficients α, under the equi-
librium constraint:

∑̀

i=1

αiyi = 0 (2)
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Fig. 1. Illustration of SVM recognition on a 2D toy prob-
lem in presence of outliers. Positive example are repre-
sented with white circles and negative example are repre-
sented with black filled circles. Solid line represents the
decision boundary of the SVM classifier. Dotted lines de-
pict the edge of the margin, support vectors are surrounded
and misclassified examples are crossed.

where (x1, y1), . . . , (x`, y`) ∈ X×{±1} is the training set.
The SVM decision function f(x) ∈ {±1} is expressed as:

f(x) = sign

(
∑

i∈SV

α0
i yiK(xi,x) + b0

)
(3)

where α
0
i are the optimal coefficients obtained by the min-

imization of (1). b0 is the shift coefficient which can be
computed with respect to the training set. SV is the set
of indexes corresponding to non-zero α0

i since the Kuhn-
Tucker condition have to be checked:

α0
i [yi(

∑

j∈SV

α0
jyjK(xj ,xi) + b0) − 1] = 0.

Training examples corresponding to non-zero αi are called
support vectors.

As long as K(x,x′) is a positive definite kernel, W (α)
is convex with respect to α. Therefore the minimization is



achieved at a unique minimum. It has been proved that for
any positive definite kernel, there exists a mapping func-
tion such as the kernel can be written as dot product, i.e.
K(xi,xj) = Φ(xi) · Φ(xj). The function Φ usually maps
feature space X into a high dimension space.

To illustrate this, we consider the well-known example
of the polynomial kernel of degree 2 on R

2:

K(x,x′) = (x · x′)2

= (x1x
′
1 + x2x

′
2)

2

= Φ(x) · Φ(x′)

with Φ : R
2 → R

3, Φ(x) = (x2
1,
√

2x1x2, x
2
2).

K(x,x′) is thus positive definite, since it can be written as
a dot product on R

3. Generally, the mapping Φ is used im-
plicitly which means that the kernel computation does not
require the explicit expression of Φ. Only definite positive-
ness of the kernel must be checked. This is called the kernel
trick [3]. The SVM classifier is in fact only a linear classi-
fier on the mapped space, see Fig. 2. Now, let us recall the
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Fig. 2. 2D Data on the left is non linearly separable. Us-
ing the polynomial kernel of degree 2, data is mapped in
R

3 on the right. The SVM separates mapped positive and
negative examples in R

3 by hyperplane. This hyperplane
corresponds to a curve in R

2.

definition of a positive definite kernel:

Definition 1. Let X be a nonempty set. A function K : X×
X → R is called a positive definite kernel if and only if K

is symmetric (i.e K(x,x′) = K(x′,x) for all x, x
′ ∈ X )

and
n∑

j,k=1

cjckK(xj ,xk) ≥ 0,

for all n ≥ 1, c1, . . . , cn ∈ R, and x1, . . . xn ∈ X .

2. CONDITIONALLY POSITIVE DEFINITE
KERNELS

We reviewed in the introduction how positive definite ker-
nels are suitable for SVM. Looking at the equilibrium con-
straint (2), it is clear that the domain to which the vector c

belongs can be restrained. This remark leads to define the
family of conditionally positive definite kernels [4]. In the

following, we review the main properties of this family and
its connections with positive definite family.

Definition 2. Let X be a nonempty set. A kernel K is called
conditionally positive definite if and only if it is symmetric
and

n∑

j,k=1

cjckK(xj ,xk) ≥ 0

for n ≥ 1, c1, . . . , cn ∈ R with
∑n

j=1
cj = 0 and

x1, . . . ,xn ∈ X .

We now give a basic example of conditionally positive
definite kernel which will be of importance in the following,
and we recall the proof of its definite positiveness from [4],
page 69. Example:

K(x,x′) = −‖x − x
′‖2

= −‖x‖2 − ‖x′‖2 + 2〈x,x′〉

Proof. To check definition 2, we consider {x1, . . . ,xn} ⊆
X with

∑n
j=1

cj = 0, and we have:

n∑

j,k=1

cjckK(xj ,xk) = −
n∑

j,k=1

cjck||xj ||2

−
n∑

j,k=1

cjck||xk||2 + 2

n∑

j,k=1

cjck〈xj ,xk〉

= −
n∑

k=1

ck

︸ ︷︷ ︸
=0

n∑

j=1

cj ||xj ||2 −
n∑

j=1

cj

︸ ︷︷ ︸
=0

n∑

k=1

ck||xk||2

+ 2
n∑

j,k=1

cjck〈xj ,xk〉 = 2
n∑

j,k=1

cjck〈xj ,xk〉 ≥ 0

This proves that minus of the square of the Euclidean dis-
tance is conditionally positive definite.

In [3], conditionally positive definite kernels are used
with SVM algorithm. In the following, we explain why
conditionally positive definite kernels are also suitable for
SVM algorithm. We firstly recall, from [4] page 74, an im-
portant relation between positive definite and conditionally
positive definite kernels:

Proposition 1. Let K be a symmetric kernel on X × X .
Then for any x0 ∈ X , we set

K̃(x,x′) =
1

2
[K(x,x′) − K(x,x0)

−K(x′,x0) + K(x0,x0)] (4)

K̃ is positive definite if and only if K is conditionally posi-
tive definite.



This Proposition 1 presents a strong and interesting link
between positive and conditionally positive definite families
since it gives a necessary and sufficient condition. It can be
used with advantages when designing new kernels for SVM.

From that, let us show how conditionally positive defi-
nite kernels are suitable for SVM. Assume that K and K̃

are two kernels satisfying the Proposition 1. We consider
the SVM problem (1) using a conditionally positive definite
kernel:

W̃ (α) = −
∑̀

i=1

αi +
1

2

∑̀

i,j=1

αiαjyiyjK̃(xi,xj)

under constraint,
∑`

i=1
αiyi = 0. We now replace K̃ by its

expression from (4). For any x0 ∈ X , we thus have:

K̃(xi,xj) =
1

2
[K(xi,xj) − K(xi,x0)

−K(xj ,x0) + K(x0,x0)]

Terms corresponding to K(xi,x0), K(xj ,x0) and
K(x0,x0) vanish according to the constraint (2). Formally:

∑̀

i,j=1

αiαjyiyjK(xi,x0) =
∑̀

j=1

αjyj

︸ ︷︷ ︸
=0

∑̀

i=1

αiyiK(xi,x0)

= 0.

Similarly,

∑̀

i,j=1

αiαjyiyjK(x0,xj) = 0.

Therefore, only the term corresponding to K(xi,xj) re-
mains, and we obtain:

W̃ (α) = −
∑̀

i=1

αi+
1

4

∑̀

i,j=1

αiαjyiyjK(xi,xj) = 2W (
1

2
α)

Hence W̃ (α) is rewritten with respect to the associated pos-
itive definite kernel K only. Thus with SVM, the use a con-
ditionally positive definite kernel is equivalent to the use of
the associated positive definite kernel. This also proves that
conditionally positive definite kernels can be used for SVM
algorithm.

3. POWER AND LOG KERNELS

In this section, we investigate properties of conditionally
positive definite family. We focus on two particular kernels:

· Power distance kernel introduced first in [3]:

KPower(x,x′) = −‖x − x
′‖β . (5)

This kernel leads to scale invariant SVM classifier, as
it can be shown by direct extension of [5].

· New kernel we named Log kernel:

KLog(x,x′) = − log
(
1 + ‖x − x

′‖β
)
. (6)

To prove that the above kernels are conditionally positive
definite, we recall from [4] page 75 and 78:

Theorem 1. Let X be a nonempty set and let K : X×X →
R be symmetric. Then K is conditionally positive definite if
and only if exp(uK) is positive definite for all u > 0.

Proposition 2. If K : X ×X → R is conditionally positive
definite and satisfies K(x, x) ≤ 0 for x ∈ X then so it is of
−(−K)β for 0 < β < 1 and of − ln(1 − K).

Proof. Considering a conditionally positive definite kernel
K such that K(x,y) ≤ 0 for any (x,y) ∈ X × X , then
it follows from Theorem 1 that exp(uK) is positive defi-
nite, and thus conditionally positive definite. The constant
kernel is obviously conditionally positive definite. Thus,
exp(uK)−1 is conditionally positive definite as the sum of
two conditionally positive definite kernels. For 0 < β < 1
and s < 0, we can write:

−(−s)β =
β

Γ(1 − β)

∫ +∞

0

(eus − 1)
du

uβ+1

− ln(1 − s) =

∫ +∞

0

(eus − 1)
e−u

u
du

Then , by replacing s with K, we can deduce that −(−K)β

and − ln(1 − K) are conditionally positive definite kernels
as a sum of conditionally positive definite ones.

By applying the previous proposition to conditionally
positive definite kernel K(x,x′) = −‖x−x

′‖2 introduced
in Sec. 2, we deduce that the Log (6) and Power distance (5)
kernels are conditionally positive definite for 0 < β ≤ 2.

4. EXPERIMENTS

We compared performances of Power and Log kernels, for
image recognition tasks. The tests have been carried on an
image database containing 5 classes from Corel database,
with an additional texture class of grasses, as shown in
Fig. 3. Each class contains 100 images. Images are de-
scribed using an RBG color histogram with a size of 43 =
64 bins. A 3-fold cross validation is applied to estimate
the errors rates. We considered the recognition problem of
one class-vs-the others. Comparisons are performed with



Fig. 3. Each row presents one of the 6 classes used for
experiments (castles, sun rises, grasses, mountains, birds,
water falls).

respect to the following kernels: RBF kernel KRBF(x, y) =

e−‖x−y‖2/2σ2

, Laplace kernel [6] KLap(x, y) = e−‖x−y‖/σ ,
Power and Log kernels. Tab. 1 summarizes the average per-
formances of the different kernels. We tuned two parame-
ters to obtain the best validation error: 1) the SVM regu-
larization coefficient and the kernel hyper-parameter (β, σ,
and d) (see Fig. 4). The Log and Power kernels lead to bet-
ter performances than the other kernels. Tab. 2 presents the
best class confusion obtained for the Log kernel. Sunrises,
Grasses and Birds classes are well recognized. Some con-
fusions appear between Castles, Mountains and Waterfalls
classes due to the presence of similar colors.

Kernels valid. error test error
RBF 24.38±0.54 24.33±1.06
Laplace 23.5±0.82 23.66±0.89
Power 21.88±0.15 21.44± 2.16
Log 21.77±0.20 21.12±1.70

Table 1. Average validation and test errors for the different
kernels.

castle sun grass mount bird water
castle 71 4 0 9 5 6
sun 5 84 0 0 0 0
grass 0 0 100 0 1 0
mount 12 6 0 72 3 19
bird 5 4 0 5 82 4
water 7 2 0 14 9 71

Table 2. Best class confusion matrix using the Log kernel.
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Fig. 4. Average validation error with respect to log2(C) and
β for Log kernel. C is the SVM regularization coefficient.

5. CONCLUSION

We have summarized, mainly from [4], several of the im-
portant properties of conditionally positive definite kernels.
In particular, conditionally positive definite kernels have
been proved to be suitable for SVM algorithm. Moreover,
conditionally positive definite kernels have many interest-
ing properties related with positive definite kernels. These
properties provides very powerful tools to design both new
conditionally positive definite kernels and new positive def-
inite kernels. We proposed in particular a new kernel in the
context of SVM, we named the Log kernel which seems to
perform particularly well in our image recognition tests.
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