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Abstract

Multimodal distribution fitting is an important task in
pattern recognition. For instance, the predetection which
is the preliminary stage that limits image areas to be pro-
cessed in the detection stage amounts to the modeling of
a multimodal distribution. Different techniques are avail-
able for such modeling. We propose a pros and cons analy-
sis of multimodal distribution fitting techniques convenient
for object predetection in images. This analysis leads us to
propose efficient and accurate variants over the previously
proposed techniques as shown by our experiments. These
variants are based on parametric distribution fitting in the
RKHS space induced by a positive definite kernel.

1. Introduction

The detection of complex objects still is a difficult task
due to the intrinsic complexity of the objects to be detected,
and also due to the variability of objects’ appearances. This
usually leads to computationally intensive detection algo-
rithms. To speed up the detection process, two kinds of ap-
proaches are usually followed: the coarse to fine approach
or the predetection approach. In the coarse to fine approach,
different levels of degraded object models are used within
the same detection algorithm to focus only on interesting
areas of the image, see for instance [6, 8]. The second ap-
proach consists in designing an alternative algorithm named
predetection which is faster and usually based on the detec-
tion of simple partial features associated with the object.
A simple example of such a partial feature is image patch.
Hence, the predetection allows, for detection algorithm, to
focus only on interesting areas.

The predetection consists in scanning the image to de-
cide which patches correspond to the object to be detected.
In [5], SVM clustering was used to solve such problem. As
underlined in [5], such approach gives good results at the
price of a careful and relatively painful selection of the neg-
ative examples. In this paper, we are interested in the pre-

detection using only positive examples. Therefore, the pre-
detection problem is not set as a clustering problem but as
the modelling of a multimodal distribution (md) of the ob-
ject patches over the space of possible image patches. One
may think to use different md fitting techniques to achieve
this modeling. The key problem is that most of theses md
fitting techniques were designed and applied on spaces with
a relatively small number of dimensions or have a complex-
ity related to the number of positive samples. Whereas, in
practice, to be informative enough, an image patch has eas-
ily more than 20 dimensions and the number of positive ex-
amples is large. We are thus trying to answer the question:
within the already proposed md fitting techniques, which
ones is able to tackle spaces of large dimensions with nu-
merous samples?

In this paper, we focus on multimodal distribution fitting
techniques based on kernel parametric distribution fitting in
the RKHS space induced by a positive definite kernel. In
section 2, we detail the predetection process. In sections 3, 4
and 5, we review different algorithms for multimodal distri-
bution fitting and we discuss advantages and disadvantages
with respect to the predetection task. Several new variants
convenient for the predetection problem are proposed. At
last, in section 6, results on experimental comparisons of
the different algorithms and variants are described and dis-
cussed.

2. Object Predetection

Road transportation applications raise increasing a num-
ber of detection problems, such as lane-markings detection
or sign detection. For sign detection, color is the obvious
feature that is used to perform the predetection. However,
this choice of feature is relatively specific to signs. A more
generic choice of feature consists in small image patches. In
practice we used image patches of 7 × 7 pixels size. Each
patch is simply represented by a vector of 7 × 7 × 3 = 147
components containing the RGB values of the concatenated
pixels.

Images of the object to be detected are decomposed
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Figure 1. (a) is the sign used for learning 7x7
image patches on the object to be detected.
(b) is the associated mask. (c) is an origi-
nal image. (d) is the associated predetection
map where possible sign patches are shown
in dark.

in small overlapping image patches each one being repre-
sented by a patch vector. An example of object of interest is
the sign shown in Fig. 1(a)(b), which is used to learn the dis-
tribution of patch vectors. After modeling this multimodal
probability distribution with one of the techniques described
in the following sections, it is easy to perform predetection
by scanning patches of any new image. For instance, pre-
detection of the sign learned only from Fig. 1(a), was per-
formed on the image of Fig. 1(c). The obtained result is
shown in Fig. 1(d), where dark values correspond to possi-
ble location of the sign. Notice that despite a poor learn-
ing database, the predetection is satisfying enough. Patches
having a probability higher than a threshold are considered
to be from the object. This threshold can be, for instance,
set to the min value of the probability over positive exam-
ples.

3. Parzen Pdf Fitting

One of the most classical way for estimating a pdf from
samples is the so-called Parzen windows technique:

p(x) =
1

m
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fσ(‖xi − x‖) (1)

where f is a positive decreasing function on R
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the time, f is taken as the normal distribution:
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t
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When Parzen technique is applied on a space of large di-
mension, i.e when d is large, numerical problems appear
in (2) due to its denominator. Indeed, for σ > 1, the value

of f is very small for most of the t, since the term σd in de-
nominator is very large. To bypass this numerical problem,
we get rid of the denominator which is common to all terms
in (1). The fact that the obtained p function is not a pdf
anymore is not a problem since the predetection threshold
is rescaled accordingly.

The advantage of using the Parzen technique is that the
learning stage consists only in selecting the parameter σ and
the predetection threshold, by cross-validation, for example.
Given a new patch vector x, the complexity for computing
its probability to be within the object of interest is O(md).
This is relatively computationally intensive when the num-
ber m of samples is large.

4. Adaptive Pdf Fitting

In (1), only one parameter σ has to be set. In statistics,
there exists a large literature on adaptive pdf fitting algo-
rithms, see [2, 7] for instance, where the pdf is assumed to
have many unknown parameters. For example, the scale σi

associated to each xi is assumed to be unknown. The pdf
model is in such case given by:

p(x) =
1

m

i=m∑

i=1

fσi
(‖xi − x‖) (3)

To estimate these parameters, iterative algorithms were
proposed. Two interesting algorithms may be recalled, the
Abramson law [7], and the algorithms derived using a max-
imum likelihood approach [2].

The numerical problem due to normalization which was
underlined in the previous section for Parzen technique
leads the adaptive pdf fitting algorithms to fail numerically
for spaces of large dimensions. Indeed, the denominators
in (3) are all with very different orders of magnitude.

5. Kernel Parametric Distribution Fitting

Statistical learning, particularly kernel methods, are
more and more used in the pattern recognition field where
the choice of priors is usually required. We now review the
approach proposed by [4, 3], we named Kernel Paramet-
ric Distribution Fitting which applies nicely to predetection.
We also extend this approach by taking care of possible nu-
merical instabilities. Compared to the Parzen technique, the
training stage of the kernel approach is more computation-
ally intensive, however, the complexity for evaluating the
interest of a given patch can be drastically reduced and be-
comes not directly related to the number of learning exam-
ples as explained in Sec. 5.2.



5.1. Feature Subspace

Rather than performing a parametric distribution fitting
in the original vector space, the fitting is performed in the
RKHS space obtained by the mapping ϕ induced by the
choice of a positive definite kernel k. Usually, ϕ(xi), where
xi, 1 ≤ i ≤ m are the m patch vectors, spans a subspace of
reduced dimension, where the parametric distribution only
needs to be fitted. To obtain such subspace a Kernel PCA,
without centering, can be performed. The centering is not
necessary to find the linear subspace spanning ϕ(xi). The
process thus consists in an eigen decomposition of the Gram
matrix Γ = (k(xi, xj)), 1 ≤ i, j,≤ m. Then, only eigen-
values larger than a threshold η are kept. Finally a matrix M

can be build allowing the projection of any vector from the
original space in an orthonormal basis of the feature sub-
space spanned by the ϕ(xi). The projection matrix is given
by M = D− 1

2 Rt, where D is a diagonal q × q matrix with
the q largest eigenvalues, and R is the m × q matrix of the
associated eigenvectors.

Gram-Schmidt orthonormalization was originally used
by [3] to compute M . This choice lacks for two reasons.
The procedure is not invariant to patch vector permuta-
tions xi. More annoying, Gram-Schmidt orthonormaliza-
tion presents also some numerical instability. On the con-
trary, eigen decomposition leads to stable computations,
and M is invariant to vectors arrangement.

A classical choice for kernel k is the Gaussian kernel
k(x, x′) = e−

‖x−x
′‖2

2σ2 , but other positive definite kernel can

be used such as the Laplacian kernel k(x, x′) = e−
‖x−x

′‖
σ ,

the Cauchy kernel k(x, x′) = (1 + ‖x−x′‖2

σ2 )−1. The opti-
mal choice of the kernel is related to the investigated appli-
cation, like in SVM learning.

5.2. Gaussian Fitting

Given any vector x of the original space, its coordinates
in the orthonormal basis of the feature subspace are MX ,
where M is the q×m matrix previously computed and X =
(k(xi, x)), 1 ≤ i ≤ m. The multimodal distribution fitting
is simply performed by a parametric fitting in the feature
subspace previously defined.

We choose the normal distribution as the parametric
model. The main advantage is the simple way for estimat-
ing the normal distribution parameters, i.e, this estimation
is closed-form. For instance, when the mean A of the dis-
tribution is assumed unknown, it is estimated by averaging,
in the feature subspace, the projections of m vectors: A =
1

m

∑m

i=1
MGi, where Gi is the column i of G. The full co-

variance matrices C can also be assumed unknown as pro-
posed in [3], and then estimated using empirical covariance
matrix expression: C = 1

m

∑m

i=1
(MGi −A)(MGi −A)t.
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Figure 2. Same data set is fitted with different
Kernel Gaussian distribution models.

Unknown mean and unknown full covariance matrix
leads to q + 1

2
q × (q + 1) unknown parameters which may

seem a relatively large number. We thus investigate model
fitting with a reduced number of parameters such as un-
known diagonal covariance matrix and isotropic covariance
matrix with an unknown scale. For each of these last two
cases, closed-form solution exists. In Fig. 2, we compare
fitted pdfs obtained on the same 1D datasets, with known
zero mean and unknown diagonal or full covariance matrix,
and with unknown mean and unknown diagonal and full co-
variance matrix. In experiments, we obtained that the use of
isotropic covariance matrix is too restrictive in practice.

Gaussian distribution model leads to easy parameter esti-
mations. With other models, such as Laplace model, closed-
form solutions are not available. Nevertheless, iterative esti-
mators derived in the context of M-estimators may be used.

Notice that the resulting distribution is not normalized to
one over the original space. Again, for predetection, the fact
that the obtained model is not a probability function is not
a problem. With the previous algorithm, given a new patch
vector x, the complexity for computing whether this patch
belongs to the object of interest or not is O(mdq), where q

is the number of eigenvalues larger than threshold η. The
complexity is thus higher than that of the Parzen approach.
However, Incomplete Cholesky Decomposition using sym-
metric pivoting (ICD) [1] of the gram matrix Γ = LtL

can be used with advantages before performing the eigen
decomposition. Indeed, ICD allows to select a subset of
q vectors ϕ(xi) which spans completely the feature sub-
space. The selection is no more performed after the eigen
decomposition but before by removing vectors associated to
a diagonal term on L lower than η. As a consequence, the
complexity for testing a new patch becomes O(qdq). The
complexity does not depends anymore on the size of the
training data set. This is a very important property for real
applications.



6. Experiments

Algo Uniform Gauss Cauchy
Parzen σ= .5 1.28±0.01 0.36±0.08 0.73±0.04
Parzen σ=1 0.79±0.08 0.33±0.10 0.52±0.07
Abramson 0.69±0.09 0.42±0.12 0.58±0.13

ML 0.79±0.23 0.63±0.30 0.52±0.16
mean diag cov 0.78±0.09 0.70±0.15 0.59±0.12
mean full cov 0.38±0.09 0.69±0.14 0.61±0.12

diag cov 0.45±0.05 0.47±0.10 0.60±0.13
full cov 0.37±0.09 0.69±0.14 0.61±0.12

Table 1. Average area error comparison for
different types of noise distributions (bi-
modal uniform, bimodal Gaussian, bimodal
Cauchy) versus the algorithm type, on 1000
random realizations.

To evaluate the performances of the various previously
described multimodal distribution fitting techniques, we run
synthetic experiments with known true random 1D distribu-
tions. Experiments with larger dimensions would have been
very time consuming. Depending on the shape of the true
distribution, we notice that the results may change. There-
fore, we did experiments with a bimodal Gaussian distribu-
tion, a bimodal uniform distribution, and a bimodal Cauchy
distribution. For each distribution type, we generate 1000
realizations of 20 samples, 10 samples for each mode. A
relatively small number of samples is used to simulate the
usual sparsity of random samples obtained in spaces of large
dimensions. In Tab. 1, the average area errors between the
true distributions and the fits are shown. Seven multimodal
distribution fitting techniques are compared. The two first
lines are for Parzen with different values of the scale σ. The
correct value of σ is one, notice how much a different value
decreases the accuracy of the estimation. The next two lines
presents the results for two adaptive techniques: the Abram-
son law and the maximum likelihood approach. These two
techniques do not apply well for spaces of large dimensions,
however it is interesting to see that, in 1D, they do not de-
crease the average errors for the Cauchy case, they are bet-
ter for the uniform case, and are worst for the Gauss case
compared to Parzen. The last four lines present results with
Kernel Gaussian distribution fitting assuming different kind
of unknown parameters: mean and diagonal covariance ma-
trix, mean and full covariance matrix, diagonal covariance
matrix, and full covariance matrix. The kernel k used is
the Cauchy kernel with fixed same scale σ = 8 and we set
η = 10−5. From this table, it appears that results are always
better when the mean is assumed known compared to when
it is assumed unknown. Results with the full and diagonal

covariance matrix are often different. However, ranks are
highly related to the shape of the true distribution.

It is worth noting that Kernel Gaussian fitting techniques
achieve comparable or better performances for the uniform
case compared to Parzen technique with the true scale. In
the Gauss and Cauchy case, average errors for the Kernel
Gaussian fitting techniques are a little higher, but it may be
due to the fact that the kernel scale was tune for the uniform
case.

7. Conclusions

We have formalized the predetection of complex object
from image patches as a multimodal distribution fitting and
we have shown that Kernel Gaussian fitting is an efficient
solution in term of complexity during the scanning of a new
image. Kernel Gaussian fitting is better in term of com-
plexity compared to Parzen approach, thanks to the use of
the incomplete Cholesky decomposition. The complexity
does not depend anymore on the size of the training data
set. Moreover, our experiments suggest that Kernel Gaus-
sian fitting may be also more accurate in estimating the true
distribution. Kernel Parametric distribution fitting can be
used with other models than the Gaussian model leading to
eventually more robust distribution fitting algorithms. We
believe that such kind of algorithm may find valuable appli-
cations outside predetection.
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