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Abstract— We introduce the Intermediate Matching (IM) ker-
nel for SVM-based object recognition. The IM kernel operates
on a feature space of vector sets where each image is represented
by a set of local features. Matching algorithms have proved to
be efficient for such types of features. Nevertheless, kernelizing
the matching for SVM does not lead to positive definite kernels.
The IM kernel overcomes this drawback, as it mimics matching
algorithms while being positive definite. The IM kernel introduces
an intermediary set of so-called virtual local features. These select
the pairs of local features to be matched. Comparisons with
the Matching kernel shows that the IM kernels leads to similar
performances.

I. INTRODUCTION

Object recognition is one of the pillar disciplines of com-
puter vision. The machine learning community has provided
efficient tools which have proved useful for solving many
recognition tasks. One of the important steps in designing
object recognition systems is the choice of feature represen-
tation. Global features are commonly used for image repre-
sentation [1]. This has the advantage of dealing with simple
structures and thus easy algorithms can be designed for feature
processing. The main drawback of such a representation is that
it does not capture localized information of objects within
images. Local representation overcomes this drawback by
extracting local features that allow object recognition against
cluttered backgrounds.

Salient points are one of the local representations that have
been widely used over the last decade. Detected salient points
can be characterized in different ways (SIFT [2], Jet [3], [4],
Image patch [5], [6]). This representation has the advantage
of leading to invariant features with respect to transformations
such as translation, rotation and scaling. Furthermore such
features are robust to occlusion and distortion. On the other
hand, kernel methods are providing successful tools that solves
many recognition problems. SVM has proved to be one of
the most efficient kernel method. The success of SVM is
mainly due to its high generalization ability. Unlike many
learning algorithms, SVM leads to good performances without
the need to incorporate prior information. Moreover, the use
of a positive definite kernel in the SVM can be interpreted
as an embedding of the input space into a high dimensional
feature space where the classification is carried out without
using explicitly this feature space.

The use of SVM classifiers for image recognition with local
features raises the need to design new kernels for such type
of representations. One of the most important problems that
should be tackled in designing kernels for local features is that,
unlike components of R

d, there is no structure between the
local features. A few kernels have been introduced to handle
such local representations. They include the principal angles
kernel [7] which compares the two sets of local features by
computing principal angles. This consists in finding maximum
angles between local features under orthogonality constraints.
In [6], Haussdorf kernel is proven to be definite positive in the
case where salient points are characterized with image patches.
In [8], while Matching kernel is not positive definite, it yielded
to good accuracy. In [9], the two sets of local features are
mapped into a high dimension space and fitted by a normal
distribution. Then Bhattacharyya’s distance is used between
these two distributions.

In this paper, we introduce a positive definite kernel based
on a new matching approach we term Intermediate Matching.
The two sets of local features are matched using an interme-
diary set of the so-called virtual local features. Each virtual
local feature defines a pair of vectors to be matched. We recall
in the next section the theoretical framework of the Matching
kernel. In § 2, we present the construction of the Intermediate
Matching kernel and in § 3 the construction of virtual local
features is given. Finally, comparisons between the Matching
and the Intermediate Matching kernels are presented in § 4.

II. MATCHING KERNEL

The problem of designing a kernel for sets of local features
can be viewed as the choice of weighting coefficients wij and
w′

ij in the following general kernel expression

Kww′(X ,Y) =

n∑

i=1

m∑

j=1

wijk(xi, yj)+

m∑

j=1

n∑

i=1

w′
ijk(xi, yj)

(1)

wij ≥ 0, w′
ij ≥ 0

where Kww′ is the kernel of the two sets of vectors X =
{x1, . . . , xn} and Y = {y1, . . . , ym}, xi, yi ∈ R

d and k is the
local kernel which operates on the d-dimensional vectors. The
two terms in Kww′ are requested for a symmetrical matching.



Indeed, the weights wij and w′
ij are respectively normalized

by:
m∑

j=1

wij = 1 ∀i = 1, . . . , n (2)

n∑

i=1

w′
ij = 1 ∀j = 1, . . . , m (3)

We make the assumption that the optimal kernel K∗ from
the family Kww′ is the one that selects the weights which
maximize the similarity between the two sets X and Y .

K∗(X ,Y) = max Kww′(X ,Y)

s.t.
m∑

j=1

wij = 1,

n∑

i=1

w′
ij = 1

We define the Matching kernel as follows

K̃(X ,Y) =

n∑

i=1

max
j=1,...,m

k(xi, yj) +

m∑

j=1

max
i=1,...,n

k(xi, xj)

K̃ associates each vector from X to its nearest neighborhood
from Y . Moreover, each vector from Y is matched with its
nearest neighborhood from X . Hence K̃ is a symmetric kernel.
K̃ can be viewed as the optimal choice within the family Kww′

under the assumption of similarity maximization previously
described.
Proof: for any wij ≥ 0, s.t.

∑m

j=1 wij = 1

k(xi, yj) ≤ max
j=1,...,m

k(xi, yj)

wijk(xi, yj) ≤ wij max
j=1,...,m

k(xi, yj)

m∑

j=1

wijk(xi, yj) ≤

m∑

j=1

wij

︸ ︷︷ ︸
1

max
j=1,...,m

k(xi, yj)

n∑

i=1

m∑

j=1

wijk(xi, yj) ≤

n∑

i=1

max
j=1,...,m

k(xi, yj)

The symmetric inequality can be obtained similarly for w′
ij

m∑

j=1

n∑

i=1

w′
ijk(xi, yj) ≤

m∑

j=1

max
i=1,...,n

k(xi, yj)

So we deduce Kww′(X ,Y) ≤ K̃(X ,Y). The equality is
achieved for the particular choice of weights: wi,ji

= 1 and
wij = 0 elsewhere, where ji is defined by k(xi, yji

) =
maxj=1,...,m k(xi, yj), and w′

ij ,j = 1 and w′
ij = 0 elsewhere,

where ij is defined by k(xij
, yj) = maxi=1,...,n k(xi, yj).

Therefore K̃ = K∗.
The Matching kernel K̃ has been previously used for local
image features [8]. Nevertheless, its positive definiteness is
not obvious. Unfortunately, the simple proof in [8] of positive
definiteness of the Matching kernel is not correct. Indeed,
coefficients wij and w′

ij depend on X and Y as shown

previously. Thus K̃ cannot be viewed as a sum of positive
definite kernels. Counter examples can be found to prove
that such kernels are actually not positive definite, see [10].
Although Matching kernels have been successfully applied for
recognitions tasks [8], [10], their use is risky since we no
longer insure that the SVM maximizes the margin in some
space. Moreover, there is always a potential risk that SVM
does not converge. We also lose the nice property of solution
uniqueness when L2 regularization is used [11]. To overcome
these drawbacks, we introduce the Intermediate Matching
kernel. The main advantage of this kernel is that it mimics
Matching kernels while being positive definite.

III. THE INTERMEDIATE MATCHING KERNEL

The Intermediate Matching kernel is designed such that it is
positive definite. A set of virtual local features V is introduced.
The role of each virtual local feature in V is to select the pairs
of local features from X and Y to be matched. The positive
definiteness of the Intermediate Matching kernel is given by
the following proposition

Proposition 1: We define the following mapping function
from P(Rd) (the set of parts of R

d) to R
d which associates

for every set X the nearest neighborhood elements from X to
v ∈ R

d.

Φv : P(Rd) → R
d

X → x
∗ = arg min

x∈X
‖x − v‖

Using the mapping Φv, we define the Intermediate Matching
Kernel as follows

KV(X ,Y) =
∑

vi∈V

e
− 1

2σ2
‖Φvi

(X )−Φvi
(Y)‖2

(4)

where V = {v1, . . . , vp} , vi ∈ R
d is the set of virtual local

features. We claim that the Intermediate Matching kernel KV

is positive definite.
Proof: To prove the positive definiteness of the Interme-

diate Matching kernel, we use the positive definiteness of the
RBF kernel:

KRBF (x, y) = e
−‖x−y‖2

2σ2 , x, y ∈ R
d

Indeed, there exists a mapping ΦRBF : R
d → H such

that KRBF (x, y) = ΦRBF (x) · ΦRBF (y) where H is the
feature space associated with RBF kernel. We set Kv(X ,Y) =

e
− 1

2σ2
‖Φv(X )−Φv(Y)‖2

. This last kernel can be written as:

Kv(X ,Y) = KRBF (Φv(X ), Φv(Y))

= ΦRBF (Φv(X )) · ΦRBF (Φv(Y))

= Φ̃v(X ) · Φ̃v(Y)

where Φ̃v : P(Rd) −→ H

X 7−→ Φ̃RBF (Φv(X ))

Kv(X ,Y) is thus positive definite. The Intermediate Matching
kernel can be written as:

KV(X ,Y) =
∑

vi∈V

Kvi
(X ,Y)



and is thus positive definite as a sum of positive definite
kernels.
It is important to recall that the positive definiteness of the
Intermediate Matching kernel is insured when the process of
building virtual local features is not related to the two sets X
and Y . Moreover, the mapping Φv can be chosen differently
from that presented in proposition 1. For instance, we can
choose a mapping Φv which defines for any set of local
features X the mean vector the k-nearest neighborhood of
a vector v. Hence a wide variety of Intermediate Matching
kernels can be derived.

v

x∗ y∗
X Y

‖Φv(X ) − Φv(Y)‖

Fig. 1. For each element v of V , the nearest elements x
∗ and y

∗ are
chosen from X and Y , respectively. The distance between the two points is
then computed and used in the computation of the Intermediate Matching
kernel.
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Fig. 2. Complete example of the computation of the Intermediate Matching
kernel. The two points v1 and v2 match the sample pair (x1,y

1
) twice. The

point x4 is far from V , so it is not used during kernel computation.

Fig. 1 shows the construction of the mapping Φv. For the
virtual local features v ∈ V , the nearest neighborhood vectors
x
∗ and y

∗ from sets X and Y are selected, then the distance
‖x∗ − y

∗‖ is used for the kernel computation. We notice that
y does not appear explicitly in the distance expression. It is
used only to define the pair of vectors (x∗, y∗) to be matched.
Fig. 2 presents a detailed example of Intermediate Matching
kernel construction. We notice that virtual local feature v1

and v2 select the same pair (x1,y1), so that the contribution
of this pair counts twice in the kernel computation. The virtual
local feature v3 selects the pair (x2,y2) and v4 selects the pair

(x3,y3). If a matching algorithm was used in this example, the
pair (x4, y3) would be matched, since they are the nearest, but
due to the fact that v3 is closer to x3 than x4 we did not obtain
the result of the classical matching. We also notice that x4

was involved in the expression of the Intermediate Matching,
therefore it can be discarded from the set X , without changing
the resulting value. In a way, virtual local features play the
role of a feature selectors. The previous example demonstrates
the influence of the choice of virtual local features on the
Intermediate Matching process which can be summarized as
follows:

Algorithm 1 Intermediate Matching Kernel

Input: X = {x1, . . . , xn}, Y = {y1, . . . , ym}, V =
{v1, . . . , vp}, σ

Initialize: K=0
for vi ∈ V do

x
∗ = arg mink ‖xk − vi‖

y
∗ = argmink ‖yk − vi‖

K = K + e
−‖x

∗−y
∗‖2

2σ2

end for

As described previously, the computational cost of the
Intermediate Matching kernel may appear high. First, the
cost of Intermediate Matching kernel is lower than the cost
of Matching kernels whenever the number of virtual local
features does not exceed the number of vectors of the two
sets X and Y . Second, the computation of the Intermediate
Matching kernel can be easily speeded-up by optimizing the
search for the nearest vectors.

To sum up, we described the Intermediate Matching kernel
and derived its positive definiteness. In the following, we will
focus on building the virtual local features.

IV. CONSTRUCTION OF THE VIRTUAL LOCAL FEATURES

We distinguish between two approaches for constructing the
virtual local features V . In the first approach, we consider a
continuous and compact subset R

d. In the second approach,
R

d is finite and discrete, and training examples are used to
obtain the virtual local features. The description of the first
approach will be limited to the theoretical point of view. The
second one will be described in more details. Validations and
tests for the second approach are given in the experimental
section.

A. Continuous case

The set V is chosen to be a continuous and compact subset
of the feature space R

d. The summation in the expression
of the Intermediate Matching kernel (4) now turns into an
integral:

KV(X ,Y) =
1

|V|

∫

v∈V

e−
1

2σ2
‖Φv(X )−Φv(Y)‖2

da

The term e−
1

2σ2
‖Φv(X )−Φv(Y)‖2

is constant when v belongs
to the intersection of the two cells of the multi-dimensional



Voronoi diagrams built from X and Y . Thus, this integration
over v turns into a volume intersection calculus. Let us denote
by Sij the volume intersection of the xi and yj Voronoi cells:

KV(X ,Y) =
1

|V|

∑

xi∈X ,yj∈Y

Sije
− 1

2σ2
‖xi−yj‖

2

(5)

=
∑

xi∈X ,yj∈Y

wije
− 1

2σ2
‖xi−yj‖

2

Rewritten with weights wij as in the previous equation,
we recognize the general kernel expression (1), up to the
normalization. Notice that, even if wij depends on X and Y ,
the kernel KV is positive definite.
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Fig. 3. For both sets X and Y , Voronoi diagrams are constructed. The
surface of the intersection between the two cells associated with xi and yj

is termed Sij .

To obtain the weights wij , we need to compute the volume
of the intersection between the cells of the two Voronoi dia-
grams. This may be difficult when the number of dimensions
d is large. Fig. 3 presents a 2D example of two Voronoi
diagrams intersecting. For the pair (xi,yj) the volume of the
two intersecting cells is shown with dashed lines and denoted
by Sij as in (5). The approach in the continuous case seems
to be promising, and we plan to investigate it more deeply in
a further study.

B. Discrete case

Within this approach, the set V is chosen to be finite and
discrete. Each virtual local feature in V will select a vector
in X and a vector in Y . Therefore, virtual local features
have to be chosen in highly informative regions of R

d. To
do so, a database of training examples is used. The regions
of R

d with a high density of local features are interesting
for choosing virtual features. To do that, all local features of
all the training images are gathered and then a clustering is
performed. In our case a simple FCM clustering algorithm
is applied, but other clustering algorithms can be used with
equal success. The cluster centers are then taken as the virtual
local features. FCM clustering algorithm is summarized in
Algorithm 2. The choice of the number of classes can be
under-estimated without difficulty. The consequence is only
a possible reduction in the number of matched local features.

vectors of X vectors of Y

v1

v3

V = {v1, v2, v3}

training jetsclass centers

v2

Fig. 4. The virtual local features are the class centers of the clustering of
whole local features extracted from training images.

Algorithm 2 Fuzzy C-Mean clustering algorithm [12]

Input: {xi}, i = 1, . . . , q

Initialize: Set the number of classes p and the weighting
factor f so that 1 < f < ∞
repeat

Update class center’s vi =
Pq

k=1
(uik)f

xk
Pq

k=1
(uij)f , i = 1, . . . , p

Update memberships uik = 1
Pp

j=1

“

‖vi−xk‖

‖vj−xk‖

” 2

f−1

for all

i = 1, . . . , p, k = 1, . . . , q

until vi and uik are stable.

Moreover, a small number p of classes increases the speed of
the kernel computation. Indeed, the computational complexity
of the Intermediate Matching kernel is O(p(n + m)). Com-
pared to the computational complexity of the Matching kernel,
which is O(nm), the Intermediate Matching kernel is faster
as soon as the number of virtual local features is smaller than
n and m the numbers of local features in the two vectors sets.

V. EXPERIMENTS

For the experiments we used an image database containing 4
objects as shown in Fig. 5. For each object, about 120 images
with a size of 640× 480 are taken with different backgrounds
and illumination conditions (about 30 different backgrounds,
outdoor, indoor).

Salient points are detected using Harris detector [3], as
shown in Fig. 6. Jets are chosen to be the invariant to rotation
color differential features [4].

Virtual local features are obtained by clustering local fea-
tures obtained from training images. To do so, there are two
possibilities: clustering positive and negative examples sepa-
rately or together. A couple of comparisons we made shows
that separate clustering leads to better performance. This can
be explained by the fact that introducing prior information
can improve the performances. A k-fold cross-validation test
is used to evaluate the recognition rate (k=4). For the sake of
simplicity, we evaluate the one-vs-the others recognition task.



Fig. 5. Images used for experiments, each row presents respectively objects
A, B, C and D.

A B

C D

Fig. 6. Some test images of the four objects A, B, C, and D, with detected
salient points.

Fig. 7 presents the error rate with respect to the number of
virtual local features for the different objects. The number of
virtual local features ranges from 2 to 80, and increasing their
number improves the performance. However, the error rate is
rapidly saturated, which means that a high number of virtual
local features is not necessary to achieve best performances.
For a given set of virtual local features, a small number of
local features is involved in the Intermediate Matching kernel.
This fact can be viewed as an online feature selection. Fig. 8
shows the evolution of the number of selected local features
with respect to the number of virtual local features. In Fig. 9,
error rate comparisons between the Intermediate Matching
and Matching kernel is presented with respect to the scale
parameter σ in (4) for objects A, B, C, and D. Performances of
the Intermediate Matching kernel are good. Tab. I summarizes
the optimal error rate obtained from the cross validation
procedure. The Matching kernel is better than the Intermediate
Matching kernel by about 1% for the recognition of objects A
and D. While the latter’s performances are better on objects C
and D by about 0.5%. As a consequence, using 80 virtual local
features, Intermediate Matching and Matching kernels are

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

number of virtual local features

er
ro

r 
ra

te

object A
 object B
 object C
 object D

Fig. 7. Error rate with respect to the number of virtual local features (number
p of cluster centers). Error rate is rapidly saturated.
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Fig. 8. The number of selected local features vs the number of virtual
local features shows that a small portion of local features are involved in the
computation of Intermediate Matching kernel.

similar in performances, while only the Intermediate Matching
kernel is sure to be definite positive. The performances of the
Intermediate Matching kernel can be improved by increasing
slightly more the number of virtual local features. We noticed
that the obtained error rates for objects A and D are around
20% while error rates for the objects B and C are less than 1 %.
This can be explained by the high similarity between objects A
and D which increases possible confusions during the learning
stage. One possible way to overcome such problem would be
to take the spatial configuration of salient points into account
so as to enhance recognition with respect to object shapes.
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Fig. 9. Error rate comparisons between Intermediate Matching and Matching
kernels with respect to the hyper-parameter σ in (4), for objects A, B, C, and
D. The Intermediate Matching kernel uses 80 virtual local features obtained
by clustering training local features.

objects A B C D

IM kernel 18.86% 1.56% 0.33% 18.47 %
σ 0.1 1 0.1 10
C 16.38 4.09 262.14 65.53

M kernel 16.90% 2.23% 0.83% 17.24%
σ 65.53 65.53 16.38 262.14
C 0.1 0.1 0.1 1000

TABLE I

BEST ERROR RATE OBTAINED FOR THE INTERMEDIATE MATCHING

KERNEL (IM) AND MATCHING KERNEL (M). THE IM KERNEL IS TRAINED

WITH 80 VIRTUAL LOCAL FEATURES.

VI. CONCLUSION

The Matching kernel for sets of vectors has been recently
introduced and has been proved to be efficient for SVM-based
image recognition with local features. However, this kernel

is not positive definite and therefore the convergence of the
SVM algorithm to a unique solution is not guaranteed. Match-
ing kernel no longer insures that SVM algorithm converges.
Moreover, The new Intermediate Matching kernel overcomes
these drawbacks as it mimics the matching kernel while being
positive definite. An intermediate set of virtual local features
is introduced for matching. For each virtual local feature, the
nearest pair of vectors to the virtual local feature is matched.
In our experiments, with a reduced number of virtual local
features, the new Intermediate Matching kernel performs as
well as the Matching kernel. The Intermediate Matching kernel
can be easily extended by changing the mapping Φv . This
leads to a larger family of positive definite kernels for local
features.
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