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Abstract The detection of bad weather conditions is cru-

cial for meteorological centers, specially with demand for

air, sea and ground traffic management. In this article, a sys-

tem based on computer vision is presented which detects

the presence of rain or snow. To separate the foreground

from the background in image sequences, a classical Gaus-

sian Mixture Model is used. The foreground model serves

to detect rain and snow, since these are dynamic weather

phenomena. Selection rules based on photometry and size

are proposed in order to select the potential rain streaks.

Then a Histogram of Orientations of rain or snow Streaks

(HOS), estimated with the method of geometric moments, is

computed, which is assumed to follow a model of Gaussian-

uniform mixture. The Gaussian distribution represents the

orientation of the rain or the snow whereas the uniform dis-

tribution represents the orientation of the noise. An algo-

rithm of expectation maximization is used to separate these

two distributions. Following a goodness-of-fit test, the Gaus-

sian distribution is temporally smoothed and its amplitude

allows deciding the presence of rain or snow. When the pres-

ence of rain or of snow is detected, the HOS makes it possi-

ble to detect the pixels of rain or of snow in the foreground

images, and to estimate the intensity of the precipitation of

rain or of snow. The applications of the method are numer-

ous and include the detection of critical weather conditions,

the observation of weather, the reliability improvement of

video-surveillance systems and rain rendering.
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1 Introduction

It is well known that for meteorological centers the detec-

tion of bad weather conditions is crucial, specially with de-

mand for air, sea and ground traffic management. The de-

tection and the characterization of weather conditions usu-

ally involves dedicated sensors, such as a visibilitymeter, a

disdrometer or a radar, etc. However, the cost of these sen-

sors sets a limit to their extensive deployment. As pointed

out by Jacobs et al. [1], the massive deployment of video-

surveillance cameras for security and safety reasons is an

opportunity for using them to monitor weather conditions.

The process of image formation in foggy weather [2] and the

fog detection [3] have already been investigated. The con-

stituent particles of rain are larger than those of fog, and the

individual particles may be visible. A distribution of such

drops falling at high velocities results in time varying inten-

sity fluctuations in images and videos. In addition, due to the

settings of the camera used to acquire the images, intensities

due to rain are motion blurred and therefore depend on the

background. Thus, the visual effects of rain are a combined

result of the dynamics of rain and of the photometry of the

environment. Stochastic models that capture the spatial and

temporal effects of rain on vision are proposed by Garg and

Nayar [4].

In this article, we address dynamic weather conditions

such as rain, hail and snow, which are simply denoted as

rain in the following of the article. In particular, a method is

proposed to detect the presence of rain in images grabbed

by fixed cameras. This method is a core component of a

camera-based sensing system which aims at detecting the

weather conditions such as fog and rain [5], while being able

to run classical video surveillance applications, like pedes-

trian detection or road traffic monitoring. This application

context gives us operating constraints for our computer vi-

sion system and leads us to use black and white images



2

Original video

Detect moving

objects by 

background 

subtraction

(a) Moving objects

Apply

photometric

and size 

selection rules

(b) Candidate rain pixels

Compute

Histogram of 

Orientation of 

Streaks (HOS)

Detect rain

pixels through

use of the 

HOS

(c) HOS(d) Detected rain pixels

Fig. 1 The rain detection process applied to a video: (a) Detection of moving objects by background subtraction; (b) segmentation of candidate

rain pixels by applying size and photometric selection rules; (c) computation of the Histogram of Orientation of Streaks (HOS) by accumulating

the orientation obtained by the method of geometric moments of the different connected components; rain presence decision is taken based on the

temporal stability as well as on the shape of the HOS; (d) detection of rain pixels using the HOS.

grabbed by fixed cameras in focus at the infinity with au-

tomatic exposure control.

Existing approaches dealing with rain mainly focus on

the segmentation and the removal or addition of rain pixels

in images for rendering applications [4, 6–9]. The first ap-

proach proposed by Hase et al. [6] uses a temporal median

filter exploiting the fact that pixels are unaffected by rain

most of the time. This idea was extended by Zhang et al. [7]

who propose to detect rain with k-means clustering (k = 2),

adding chromatic constraints so as to reduce the false detec-

tions. However, this method cannot be used online due to

the k-means clustering algorithm which needs to be applied

on the entire video sequence. Garg and Nayar [4] propose

a method which uses the optical properties of a falling rain

drop, so as to segment the video scenes in rain and non-rain

regions. In addition, false detections are reduced by using a

photometric constraint which models the appearance of rain

streaks. Brewer and Liu [8] detect rain streaks by detecting

their intensity spikes. They reduce false detections based on

the aspect ratio and the orientation of the rain streaks. Bar-

num et al. [9] propose a global appearance model to iden-

tify the typical behavior of rain in the frequency-domain and

present a filter in the frequency-domain to reduce or increase

its visibility.

Contrary to previous approaches, which do not explicitly

track the rain particles between the frames, Sakaino et al.

[10] estimate the motion of falling snow based on a motion

estimation method for semi-transparent objects with a long-

range displacement between frames. This approach seems

limited to the tracking of snowflakes. Finally, Halimeh and

Roser [11] propose a photometric model for a raindrop on a

car windshield and use it to detect rain presence for driver

assistance purposes.

In the visual surveillance context, only the methods from

Hase et al. [6], Garg and Nayar [4], Brewer and Liu [8]

and Barnum et al. [9] are relevant. However, their methods

do not directly address the detection of rain events. Conse-

quently, their methods lead to the over-segmentation of rain

pixels and cannot be used alone to detect rain presence. For

this purpose, we develop a complementary method, which

is based on a segmentation into blobs, whose core compo-

nent is a histogram of orientation of streaks. For the segmen-

tation, we use a classical background subtraction method

which can be seen as a generalization of the temporal me-

dian filter [6], of the k-means temporal clustering [7] and of

the photometric constraint proposed by Garg and Nayar [4].

It allows also an easier implementation of the method on ex-

isting visual surveillance systems. Finally even if it is not our

primary objective, the method offers some advantages over

existing methods of restoration of images altered by rain.

The outline of our method is illustrated in Fig. 1. First,

we segment the potential rain pixels. Our approach relies on

a classical background subtraction method [12] but the ap-

proaches issued from [4, 9] would also suit the purpose. We

reduce false detections by applying selection rules based on

photometry and size. Then, we build a so-called Histogram

of Orientation of Streaks (HOS) by accumulating the orien-

tations of the different connected components obtained by

the method of geometric moments, which is also used in [8].

The data of this histogram are then modeled as a Gaussian-

uniform mixture, whose parameters are estimated using an

expectation maximization (EM) algorithm. A goodness-of-

fit test allows deciding if the model fits the HOS well. If it is

the case, a temporal smoothing filter is applied to the param-

eters of the Gaussian-uniform mixture. A decision criterion

on the smoothed histogram then allows detecting the pres-

ence or absence of rain. When rain is detected, the rain pix-
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els can be detected accurately and easily in the images and

rain intensity can be estimated as well. The applications of

the proposed method are numerous, for instance: detection

of critical weather conditions for road safety, weather obser-

vation, improvement of the reliability of video-surveillance

systems and rain rendering. Different experimental valida-

tions are presented to assess the performance of the pro-

posed approach and to illustrate how complementary our

method is compared with existing methods.

This article is organized as follows. In section 2, we

present the process of segmentation of potential rain pixels.

In section 3, we present the construction of the HOS. In sec-

tion 4, we present the EM algorithm to estimate the param-

eters of the HOS. In section 5, we present the decision crite-

rion, which is used to decide rain presence. Once rain pres-

ence is detected, it is easy to detect rain pixels as described

in section 6. In section 7, we present a method to estimate

the rain intensity using the HOS directly. In section 8, we

present applications of the method. In Section 9, we evalu-

ate how our method complements existing methods. Finally,

we discuss the experimental results in section 10 and we

conclude in section 11.

2 Segmentation of Potential Rain Streaks

The first stage of the method consists in segmenting rain

streaks which are visible in the image. Different dedicated

methods have been proposed to find potential rain streaks.

Like in other methods, three different cues are used: motion,

photometry and size of the rain streaks. Unlike other meth-

ods, motion segmentation, which is usually used in visual

surveillance systems, is adapted to the problem of segmen-

tation of rain streaks.

2.1 Visibility of Rain

According to Garg and Nayar [4], the visibility of rain in

videos depends on the rain properties, on the scene proper-

ties and on the camera parameters:

νr ∝
a2
√

ρ√
ν

︸ ︷︷ ︸

Rain properties

Scene properties
︷ ︸︸ ︷

(Lr−Lb)

√

G ( f ,N,z0)√
Te

︸ ︷︷ ︸

Camera parameters

(1)

where G ( f ,N,z0) is a function of focal length f , F-number

N and the distance z0 of the focus plane. Te denotes the ex-

posure time. (1) shows that the visibility νr of rain increases

as the square of the size a of the raindrop and as the square

root of the rain density ρ . The visibility also decreases lin-

early with the difference between background brightness Lb
and rain brightness Lr.

Given a scene in rain, camera parameters can be adjusted

to see the rain droplets as proposed in [4]. Nevertheless in

the visual surveillance context, the camera is in focus at the

infinity, so that (1) can be slightly simplified:

νr ∝
a2
√

ρ√
ν

(Lr−Lb)

√

G ( f ,N)√
Te

(2)

Consequently, the closest droplets are not in focus whereas

the furthest ones are. The droplets which are in focus are mo-

tion blurred and create streaks in the images. Since the focal-

ized droplets are the furthest ones, the streaks are generally

small. To segment these streaks, we assume that a droplet is

a moving elongated object which is small and brighter than

its background. The segmentation process is deduced and is

composed of three stages: motion segmentation, photomet-

rical selection and size selection.

2.2 Segmentation of Moving Objects

Different methods have been proposed in order to detect

moving objects. In the context of visual surveillance, ap-

proaches relying on background modeling [13] are com-

monly used since they allow taking into account gradual il-

lumination changes in the scene, by constantly updating the

background model. Basically, such methods allow comput-

ing a background model (BG) of the scene, which contains

the static objects, as well as a foreground model (FG) of the

scene, which contains the moving objects. Based on the re-

view of literature proposed in [13], we chose the popular

approach of the Mixture of Gaussians (MoG) [12]. In this

approach, each pixel in the scene is modeled by a mixture of

K Gaussian distributions. The probability that a certain pixel

has a value Xt at time t can be written as:

P(Xt) =
K

∑
k=1

ωkN (Xt |µk,t ,σk,t) (3)

where ωk is the weight parameter of the kth Gaussian com-

ponent. N (X |µk,σk) is the Gaussian distribution of the kth

component:

N (X |µk,σk) =
1

σk

√
2π

e−
1
2σ−2

k
(X−µk)

2
(4)

where µk is the mean and σk is the standard deviation of the

kth component. The K distributions are ordered based on the

fitness value
ωk
σk

and the first B distributions are used as a

model of the scene background where B is estimated as:

B = argmin
b

[( b

∑
j=1

ω j

)

> T

]

(5)

T is the minimum prior probability of observing a back-

ground pixel. The Gaussian components that match the tested
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Fig. 2 Segmentation of potential rain streaks by background subtraction as well as selection rules on photometry and size: (a) original rainy image;

(b) background model; (c) foreground model; (d) result after application of the photometric selection rule; (e) result after the application of the

size selection rule.

value are updated by means of the following update scheme

governed by the decay factor γ1:

ωk,t = (1− γ1)ωk,t−1 + γ1Mk,t

µk,t = (1−ρ)µk,t−1 +ρXt

σ2
k,t = (1−ρ)σ2

k,t−1 +ρ
(
Xt −µk,t

)2
(6)

ρ = γ1N (Xt |µk,t ,σk,t)

Mk,t =

{
1; if ωk is the first matched component

0; otherwise

1
γ1

defines the time constant which determines change. Only

two parameters, γ1 and T need to be set. Then, background

subtraction is performed bymarking as foreground any pixel,

whose intensity is more than D times the standard devia-

tion away from any of the B distributions. Such a method

has satisfactory performance for rain segmentation despite

it does not use the relationships and the correlations amongst

nearby pixels. Conversely, the more robust background mod-

eling approaches, like [14–16], try to be robust to periodic

motions, such as the moving trees. Consequently, if rain has

a periodic motion, these methods are not likely to be rele-

vant to detect the potential rain streaks. Finally, the MoG

approach can be seen as a generalization of the median fil-

ter and the k-means algorithm, respectively used by Hase et

al. [6] and Zhang et al. [7].

2.3 Applying a Photometrical Selection Rule

Garg and Nayar [4] propose a local method to detect rain

streaks in images, which relies on two constraints. First, the

change in intensity due to a rain drop in the nth frame must

satisfy the constraint:

∆ I = In− In−1 = In− In+1 ≥ c (7)

where c is a threshold that represents the minimum transient

change in intensity caused by a rain drop. The background

subtraction approach proposed in the previous paragraph is

similar to this process. Based on (7), a photometrical selec-

tion rule for the foreground pixels is built:

∆ I = IFG− IBG ≥ c (8)

It is also assumed in [4] that the streak intensity is linearly

related to the background intensity occluded by the rain. We

do not use this strong assumption.

2.4 Applying a Size Selection Rule

The last step of the segmentation of rain streaks consists in

filtering out objects in the FG which are too large and too

small. This is done by finding the different connected com-

ponents by a flood-fill algorithm, and then by suppressing

the connected components whose size is not plausible. A
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similar approach is proposed by Brewer and Liu [8], who

propose a method to build such a size template selection.

2.5 Results

Fig. 2 illustrates the segmentation of potential rain streaks.

Fig. 2(a) and Fig. 2(b) show an image with rainy weather

and its corresponding BG. Fig. 2(c) shows the FG, where

rain streaks are visible. Then, the result of the photomet-

ric selection rule (8) is shown in Fig. 2(d). Finally, the size

selection rule is applied (see Fig. 2(e)). Thereafter, only the

rain streaks and some pixels of noise remain. The aim is now

to separate the rain streaks from the pixels of noise.

3 Construction of the HOS

3.1 Methodology

Resulting from the segmentation process presented in the

previous section, we have an image of small blobs, which

are either rain streaks or pixels of noise. Rain streaks are as-

sumed to be majority and to be almost vertically oriented.

We rely on a soft-voting strategy to estimate the orienta-

tion of the rain, and to reject the pixels or blobs which do

not correspond to this orientation. It is based on the com-

putation of an Histogram of Orientation of Streaks (HOS)

which takes into account the confidence in orientation mea-

surement. In order to estimate the orientation of each streak,

different methods may be used. Among them, the method of

geometric moments applied to each segmented streak gives

the best results.

3.2 Soft-Voting Algorithm

A soft-voting process is often used to obtain reliable data

from multiple uncertain data sources. In the area of com-

puter vision, such a process is often used to deduce from

local information a global information, e.g. the Hough trans-

form [17]. In a similar way, we propose to estimate the ori-

entation of the rain by the accumulation of the local orien-

tation of the rain streaks following a Parzen approach [18].

In this aim, a weighted cumulative histogram h(θ), made of

180 bins, is computed for θ ∈ [0,π]which takes into account

a weight wi and an uncertainty dθi on the estimation of the

orientation θi of each blob Bi,1≤i≤P. For each blob, we cu-

mulate a Gaussian distribution N (θ |θi,dθi) with center θi
and standard deviation dθi in the histogram. This histogram

of orientation is thus expressed as:

h(θ) =
P

∑
i=1

wiNi(θ |θi,dθi) (9)

where P denotes the total number of blobs.

3.3 Computation of the Orientation of the Streaks

Different methods may be used to estimate locally the orien-

tation of a blob. We implemented and compared two differ-

ent approaches. The first method is a pixel-based approach

which relies on the computation of local gradient. It is simi-

lar to existing HOG approaches [19]. The second method is

a patch-based approach which relies on the method of geo-

metric moments, applied to each segmented blob.

3.3.1 Gradient Orientation (HOG)

Let us denote Gx and Gy the gradient of a pixel along x and

y axis obtained with the Canny-Deriche filter [20]. The ori-

entation of the gradient θ is obtained by:

θ = tan−1 Gy

Gx

(10)

The uncertainty on the estimation of the orientation dθ is

obtained by computing the partial derivatives of (10) with

respect to Gx and Gy:

dθ =
dG

√

G2
y +G2

x

(11)

assuming dGx = dGy = dG. The weight w of each sample

in (9) is chosen as the magnitude of the gradient. Based on

(9), the HOG is expressed as:

h(θ) =
P

∑
i=1

√

G2
xi

+G2
yi

N

(

θ

∣
∣
∣
∣
tan−1 Gyi

Gxi

,
dG

√

G2
xi

+G2
yi

)

(12)

The value of dG is chosen empirically by performing tests

in simulation (see subsection 3.4).

Fig. 3 An ellipse with its main parameters: Major semiaxis a, short

semiaxis b, gravity center (x0,y0) and tilt angle θ .
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(a) (b)

(c) (d)

Fig. 4 Synthesized images presenting streaks with different widths,

lengths and orientations following a Gaussian distribution N (µ,σ):
(a) ls = 10 pixel, ws = 1 pixel, µ = 45˚, σ = 10˚; (b) ls = 10 pixel,

ws = 2 pixel, µ = 55˚, σ = 10˚; (c) ls = 20 pixel, ws = 2 pixel, µ = 45˚,

σ = 0˚; (d) ls = 10 pixel, ws = 1 pixel, µ = 0˚, σ = 10˚.

3.3.2 Geometric Moments (HOS)

Each segmented blob Bi,1≤i≤P is assimilated with an ellip-

tical disk. Fig. 3 shows an ellipse characterized by its 5 pa-

rameters: major semiaxis a, short semiaxis b, gravity center

(x0,y0) and tilt angle θ . The method of geometric moments

is used to compute the geometric parameters of the asso-

ciated ellipse [21]. The central second-order moments are

given by:

m20
i =

1

m00
i

∑
(x,y)∈Bi

(x− x0)
2

m11
i =

1

m00
i

∑
(x,y)∈Bi

(x− x0)(y− y0) (13)

m02
i =

1

m00
i

∑
(x,y)∈Bi

(y− y0)
2

Then, the major and short semiaxis of the equivalent ellipse

are given by:

ai = 2

√

λ 1
i (14)

bi = 2

√

λ 2
i (15)

where λ 1
i and λ 2

i are the eigenvalues of the matrix:
(
m20
i m11

i

m11
i m02

i

)

(16)

The orientation θi of the blob Bi is given by:

θi =
1

2
tan−1

(
2m11

i

m02
i −m20

i

)

(17)

The weight wi is chosen as the value of the major axis

ai of the equivalent ellipse so as to give a higher weight to

longer streaks. The uncertainty on the estimation of the ori-

entation dθi is computed from:

(dθ)2 =
(

∂θ
∂m11 dm

11
)2

+
(

∂θ
∂m02 dm

02
)2

+
(

∂θ
∂m20 dm

20
)2

(18)

Assuming dm11 = dm02 = dm20 = dm, we deduce:

dθi =

√

(m02
i −m20

i )2 +2(m11
i )2

(m02
i −m20

i )2 +4(m11
i )2

dm (19)

The value of dm is chosen empirically by performing tests

in simulation (see subsection 3.4). In this way, the contribu-

tion of elongated ellipses to the HOS is a peaky Gaussian

distribution. The contribution of ellipses with shapes close

to disks is a flat Gaussian distribution. Finally, the HOS in

(9) is expressed as:

h(θ) =
P

∑
i=1

ai

dθi
√
2π

e
−1

2

(
θ −θi
dθi

)2

(20)

where dθi is given by (19), and ai by (14).

3.4 Evaluation of the HOG and HOS

In this paragraph, the ability of the HOG and of the HOS to

estimate the orientation of streaks is assessed. In this aim,

we use synthetic images with streaks having orientations

following a Gaussian distribution. We vary the width ws,

(a) (b)

(c)

Fig. 5 Different histograms based on image 4 (b): (a) Histogram of

samples orientation; (b) HOG; (c) HOS.



7

0 20 40 60 80 100
0

10

20

30

40

50

µf

(+
) 
ε
µ

 &
 (

*)
 
ε
σ

 

 

ε
µ

=f(µf)

ε
σ

=f(µf)

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

σf

(+
) 
ε
µ

 &
 (

*)
 
ε
σ

 

 

ε
µ

=f(σf)

ε
σ

=f(σf)

0 5 10 15 20 25 30
0

50

100

150

200

250

300

350

400

Streak length

(+
) 
ε
µ

 &
 (

*)
 
ε
σ

 

 

ε
µ

=f(Streak length)

ε
σ

=f(Streak length)

(a) (b) (c)

Fig. 6 Quantitative evaluation of the HOS representation on simulated data: Relative errors committed on the mean εµ and standard deviation εσ

values of the histogram obtained with the method of geometric moments versus : (a) The specified mean µ f ; (b) The specified standard deviation

σ f ; (c) The streak length.

the length ls, the mean values µ and the standard devia-

tion σ of the streaks. Fig. 4 shows samples of synthetic im-

ages. Fig. 5(a) shows the histogram of samples orientation

from Fig. 4(b). Fig. 5(b) shows the HOG. Fig. 5(c) shows

the HOS. From a qualitative point of view, one can see the

greater ability of the HOS algorithm to approach the original

distribution, allowing locating its main orientation by look-

ing at the peak of the histogram. The noisy parts of the HOG

are due to the fact that the gradient computed at the extrem-

ity of the rain streaks is not oriented like the longitudinal

part of the rain streaks.

To assess the HOS quantitatively, we measure the mean

value µm and the standard deviation σm of the peak of the

HOS on different simulated images, where each parameter

of the streak-noise distribution is varied independently. For

each simulation, we compute the relative errors committed

on the mean εµ and on the standard deviation εσ measured

on the HOS:

εµ =
µ f −µm

µ f

(21)

εσ =
σ f −σm

σ f

(22)

In each simulation, 350 streaks are generated. The default

parameters are: ws = 1 pixel, ls = 11 pixel, µ f = 55˚and

σ f = 10˚.

Fig. 6(a) shows the committed relative error versus the

mean µ f . Relative errors are smaller than 10% on the stan-

dard deviation εσ when µ f is greater than 10 pixels. In the

same way, relative errors are smaller than 5% on the mean

εµ when µ f is greater than 10 pixels. Fig. 6(b) shows the

committed relative errors versus the standard deviation σ f .

The relative error is smaller than 10% and 1% respectively

for the standard deviation εσ and the mean εµ . Relative er-

rors on the standard deviation εσ are smaller than 2% when

σ f > 13. Fig. 6(c) shows the committed relative errors ver-

sus the length of the streak ls. The method of geometric mo-

ments is efficient only if the streak length ls is greater than

5 pixels with errors smaller than 5% on the mean εµ and

on the standard deviation εσ . These results prove that the

HOS is relevant for estimating the main orientation of the

streaks distribution if µ > 10 pixels and ls ≥ 5 pixels. We

also compared quantitatively the HOS with the HOG. The

HOSwhich relies on blobs is more robust to noise than to the

HOG which relies on pixels. However, results of the HOG

are not included in Fig. 6 for the sake of readability.

Finally, we simulated more realistic images of rain streaks

using the database of rain streaks provided by Garg and Na-

yar [22], in which we added a stochastic orientation of the

streaks. Two sample images are shown in Fig. 7. The corre-

sponding HOS are shown, whose shape resembles the HOS

in Fig. 5. The satisfactory results obtained with these realis-

tic physical simulations allows establishing the relevance of

the HOS representation in order to capture the orientation of

actual rain and not only of artificial streaks.

0 π

h(θ)

0 π

h(θ)

Fig. 7 Realistic rainy images simulated using the rain streak database

provided by Garg and Nayar with different orientations [22] as well as

the corresponding HOS.
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4 Modeling of the HOS

In the previous section, the construction of the HOS has

been presented and its ability to represent the majority ori-

entation of a set of oriented blobs has been evaluated. In this

section, we propose to model the data of the HOS and to de-

sign an algorithm to automatically estimate its parameters in

the presence of noise.

4.1 Model

The FG is composed of rain streaks combined with pixels

of noise. We assume that the rain streaks have an orientation

which follows a Gaussian distribution. The remaining ques-

tion is the modeling of the noise. It mainly comes from other

elements of the scene which remain in the FG after segmen-

tation, as well as from image compression artifacts. Gener-

ally, this type of noise does not have any preferred orien-

tation. However, in structured environments such as streets,

the main orientation of the noise may be directed along the

vanishing lines of the scene. In practice, its standard devia-

tion is so big, that it can be generally considered as a uniform

distribution. From these considerations, we model the data

in the HOS as a Gaussian-uniform mixture distribution:

y(θ) ∼ ΠN (θ |µ ,σ)+(1−Π)U[0,π](θ) (23)

where θ is an angle between [0,π] and y(θ)dθ is the proba-

bility of observing [θ ,θ +dθ ]. Π denotes the surface of the

Gaussian distributionN (θ |µ ,σ)with mean µ and standard

deviation σ . U[0,π](θ) denotes the uniform distribution on

the interval [0,π].

4.2 Estimation of Model Parameters

The parameters are estimated using an expectation-maximi-

zation (EM) algorithm, see for instance [23]. The usual al-

gorithm assumes a random sampling. Here, the angle θ is

quantified as (θi)i=1,...,N and for each θi, we have yi samples.

Therefore, we adapted the algorithm to take into account the

fact that x is quantified. The algorithm is still iterative in two

steps. The kth expectation step is given by:

ẑki =
(1− Π̂ k−1)U[0,π](θi)

Π̂ k−1N (θi|µ̂k−1, σ̂ k−1)+(1− Π̂ k−1)U[0,π](θi)
(24)

where i = 1, . . . ,N. The kth maximization step is given by:

µ̂k =
∑N
i=1(1− ẑki )θiyi

∑N
i=1(1− ẑki )yi

(σ̂ k)2 =
∑N
i=1(1− ẑki )(θi− µ̂k)2yi

∑N
i=1(1− ẑki )yi

(25)

Π̂ k =
∑N
i=1(1− ẑki )yi

∑N
i=1 yi

To initialize the algorithm, µ̂0, σ̂0 and Π̂ 0 are approximated

using the following rules. We compute the median value λ

of the yi in the histogram. This value λ is subtracted from

each yi, which allows keeping only the upper part of the

Gaussian distribution by removing the negative values. Then,

the mean value µ̂0, the standard deviation σ̂0 and the surface

Π̂ 0 are computed from the upper part of the histogram. For

complete genericity, the distance between angles must take

into account the angular periodicity on the previous compu-

tations.

Finally, when the EM algorithm has converged, we ap-

ply a Goodness-of-Fit (GoF) test. This GoF test is used to

know if the fitted distribution is close enough to the observed

one using a decision threshold. The GoF test compares the

cumulated distribution function of the observed histogram

Fo(x) with the cumulated distribution Fe(x) obtained by the

EM algorithm. The maximum distance D between the fitted

and the observed functions is computed as:

D = sup
x∈[0,π]

|Fe(x)−Fo(x)| (26)

If D exceeds a threshold Dc, the fitting is considered inaccu-

rate and the frame is rejected from further processing.

4.3 Accuracy of the EM Algorithm

To test the accuracy of the EM algorithm, we have simulated

images with two different distributions of streaks and we

have evaluated the errors on the estimated parameters. Let us

show an example of estimation result. The first distribution

is a Gaussian distribution of rain streaks with µ = 65˚and

σ = 10˚. The second distribution is a uniform distribution

with a surface of 40% of the total surface of the distribution

and represents the noise. A sample synthetic image and the

corresponding histogram of orientation samples are shown

respectively in Fig. 8(a) and Fig. 8(b). The parameters esti-

mated by the EM algorithm are µ = 64.3˚and σ = 11.2˚and

the surface of the uniform distribution is estimated to 37%.

Fig. 8(c) shows the HOS as well as the Gaussian uniform

mixture model superimposed. Based on the different tests

carried out, the accuracy of the proposed EM algorithm is

satisfactory.

5 Decision on Rain Presence

In the previous section, an EM algorithm has been designed

to dynamically estimate the parameters of the HOS. In this

section, a process is designed so as to decide if rain is present

in the tested image sequence.
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(a) (b) (c)

Fig. 8 Verification of the EM algorithm for Gaussian-uniform modeling: (a) image presenting different streaks with orientations following a

Gaussian-uniform mixture distribution; (b) histogram of orientation samples; (c) HOS and fitted mixture model obtained by the EM algorithm.

The black curve represents the fitted distribution, which is decomposed in the Gaussian distribution in green and the uniform distribution in red.

5.1 Principle

The decision on the presence or absence of rain is taken on

the past images where the model is valid, i.e. the images

where the GoF test is positive. If rain is present in the scene,

the surface of the Gaussian distribution estimated by the EM

algorithm should be quite high most of the time. If rain is not

present in the scene, the surface of the Gaussian distribution

should remain quite low most of the time.

A Kalman filter [24] is used to compute a temporally

smoothed model of the HOS (three parameters Π ,µ ,σ ) as-

suming a static evolution model. If the GoF test is negative,

the filter is not updated. Then, a threshold on the surface of

the Gaussian distribution of the filtered distribution is used

to take the decision on the presence or absence of rain. If the

surface is above a threshold denoted Πrain, rain is detected.

If it is not the case, rain is not detected in the scene. In the

next paragraph, the effect of each step of the decision pro-

cess is shown through a complete experimental validation.

5.2 Experimental Validation

5.2.1 Methodology

To assess the ability of the algorithm to detect rain pres-

ence correctly, two videos of the same place were used, one

with rain and the other without rain. The scene shows a clas-

sical urban street with a lot of moving objects like cars,

tramways, pedestrians, etc. Each video sequence is made

of 6,000 video frames. A sample image of the scene in the

presence of rain is shown in Fig. 12(a). First, a qualitative

evaluation of the method is proposed. Second, a quantitative

evaluation is performed. A confusion matrix [25] as well as

a ROC curve (Receiver Operating Characteristics) [26] are

used to assess the method. In our case, for a two-class prob-

lem (rain, no-rain), the confusion matrix is expressed with

four terms, see Tab. 1. TP is the number of True Positives.

FP is the number of False Positives. TN is the number of

True Negatives. FN is the number of False Negatives.

Detected

Rain Noise

Truth
Rain TP FN

No rain FP TN

Table 1 Confusion matrix for presence / absence of rain.

From this matrix, two terms are usually defined: the True

Positives Rate TPR = TP
TP+FN

and the False Positives Rate

FPR = FP
FP+TN

. ROC curves are obtained by plotting the

TPR with respect to the FPR for different values of the pa-

rameters of the considered detector. If the numbers of posi-

tive and negative samples are within the same order of mag-

nitude, the accuracy AC of the detector is defined as:

AC =
TP+TN

TP+FP+FP+TN
. (27)

In our experiments, we try to maximize AC with respect to

the tested parameters values.

5.2.2 Qualitative Results

The parameters values of the decision process have been

chosen using a trial and error process. Indeed, it is easy to

detect rain presence in image sequences with rain. It is more

difficult to not detect rain presence in image sequences in

clear weather. The GoF test is useful to detect images which

follow or not the Gaussian-uniform distribution. However

in clear weather, blobs with Gaussian distributed orienta-

tion may be detected in a single image. Such detections are

punctual events and they generally have different orienta-

tions in the following images. In rainy weather, the orien-

tation of the rain streaks is more consistent. Consequently,
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Fig. 9 ROC curve TPR = f (FPR) for different processes of decision
on rain presence. The green curve (+) shows the effect of the sole GoF

test. The blue curve (o) shows the effect of the GoF test coupled with

the threshold Πrain. The red curve (*) shows the effect of the complete

decision process for different values of the threshold Πrain.

the proposed temporal filter allows distinguishing the two

events. Finally, a uniform distribution is likely to be assim-

ilated with a flat Gaussian distribution. To prevent this kind

of error, the threshold Πrain on the surface of the Gaussian

distribution is very useful. The combination of these three

thresholds gives the best results.

5.2.3 Quantitative Results

To see the effect of each parameter of the decision process,

we have plotted the ROC curve for different alternative algo-

rithms from the simplest one to the most complex one. First,

we only use the GoF test, so as to set the value of the critical

threshold Dc. The green curve (+) in Fig. 9 gives the ROC

curve of the rain detector for different values of Dc. The best

result (see previous paragraph) is obtained for Dc = 0.06,

where TPR = 73% and FPR = 55% and AC = 59%. The

confusion matrix is given in Tab. 2.

Detected

Rain Noise

Truth
Rain 4361 1638

No rain 3289 2709

Table 2 Detection results using only the GoF test.

Second, we use the GoF test coupled with a threshold

on the surface of the Gaussian distribution. The blue curve

(o) in Fig. 9 gives the ROC curve of the rain detector for

different values of the threshold Πrain. The best result is ob-

tained forDc = 0.06 and Πrain = 0.4, where TPR= 74% and

FPR= 7% and AC = 84%. The confusion matrix is given in

Tab. 3.

Detected

Rain Noise

Truth
Rain 4419 1581

No rain 396 5603

Table 3 Detection results based on the use of the GoF test coupled

with the use the threshold Πrain.

Third, we use the complete decision process described

in paragraph 5.1, where we add a Kalman filter between the

GoF test and the test using Πrain. The red curve (*) in Fig. 9

gives the ROC curve of the rain detector for different values

of the threshold Πrain. The best result is obtained for Dc =
0.06 and Πrain = 0.35, where TPR = 97% and FPR = 7%

and AC = 95%. The confusion matrix is given in Tab. 4. In

these tests, the parameters of the Kalman filter are set as

follows: The variance of the process noise is equal to 0.01

and the variance of the measurement noise is equal to 0.1.

The setting of these parameters was done empirically, again

by maximizing the accuracy of the rain detector. We found

that the sensitivity to these parameters was not important.

The final results are satisfactory.

Detected

Rain Noise

Truth
Rain 5790 210

No rain 396 5603

Table 4 Detection results based on the complete decision process.

Despite an accuracy of 95%, some errors still remain and

can be explained. In several frames, many moving objects

(pedestrians, cars, tramway) are simultaneously present in

the scene, which leads to pixels of noise in the result of the

segmentation process. In the same time, the useful surface

for rain detection is reduced due to large moving objects,

which makes rain more difficult to detect and explains the

number of false negatives. In other frames, when there is

no rain, the noise sometimes happens to be structured with

the same orientation during few frames, which explains the

number of false positives.

Another video was recorded on the parking lot of our

laboratory in presence of rain. One image of the scene is

shown in Fig. 12(b). The scene contains trees, cars, pedes-

trians and rain. The duration of the sequence is about one

minute with a frame rate equal to 25 images per second

(1500 images). The TPR is 98.5% and the FPR is equal to

1.5%. Yet another video was recorded on the same parking

lot, but this time in presence of snow. One image of the scene

is shown in Fig. 12(c). The duration of the sequence is about

six minutes with a frame rate equal to 15 images per sec-

ond (5438 images). The TPR is 98.9%. The FPR is equal to

1.1%. The errors can be explained as previously.
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(a) (b)

Fig. 10 Quantitative evaluation of the rain pixels detection algorithm on synthetic Images: (a) ROC curve; (b) AC versus the threshold Sb.

In order to study the latency of our algorithm during a

changeover, we used a sensor simulator, named Pro-SiVIC1

[27], in order to create a scenario with alternate presence

and absence of rain. From presence to absence of rain, the

latency of the algorithm is about 25 images. From absence

to presence of rain, the latency is about 50 images.

6 Rain Pixels Detection

In the previous section, a decision process on rain presence

has been proposed and assessed. In this section, we propose

to detect rain pixels through use of the HOS.

6.1 Approach

Once rain has been detected in the scene, the computation

and modeling of the HOS offers a convenient and efficient

way to segment the rain pixels in the images. From the es-

timated Gaussian-uniform mixture, we can compute the fol-

lowing probabilities:

P(θi|rain) =
N (θi|µ ,σ)

ΠN (θi|µ ,σ)+(1−Π)U[0,π](θi)
(28)

P(θi|noise) =
U[0,π]

ΠN (θi|µ ,σ)+(1−Π)U[0,π](θi)
(29)

Then, when the probability ratio
P(rain|θi)
P(noise|θi) > Sb the blob Bi

is classified as rain streak. This ratio is written as a function

of (28) and (29) using Bayes rules.

1 http://www.civitec.net/

6.2 Experimental Validation

6.2.1 Synthetic Images

First, we created synthetic images with streaks having orien-

tations following a Gaussian-uniform distribution with dif-

ferent percentage of pixels of noise ranging from 10 to 90%.

In order to assess the influence of the parameter Sb (with sb ∈
[0,1]) on the classification result, we computed a ground-

truth classification in rain/non-rain pixels for different val-

ues of the threshold Sb. We then compared pixel classifica-

tion with the ground truth. Since the numbers of rain pixels

and of non-rain pixels are not within the same order of mag-

nitude, Dice’s coefficient is used to compute the accuracy:

Dc =
2TP

2TP+FP+FN
. (30)

Fig. 10(b) shows Dice’s coefficient Dc versus the thresh-

old Sb and Fig. 10(a) the ROC curve. From these figures,

we conclude that the optimal threshold equals Sb = 0.56

with Dc = 90.9% (point A in Fig. 10(b)), TPR= 96.2% and

FPR = 22.6%.

6.2.2 Actual Images

For experiments on actual images, we used the video in-

troduced in section 5.2.1. We manually segmented the rain

streaks on 33 images. This segmentation was performed by

ten different persons, which allows building a ground-truth.

To compute the accuracy of the rain pixels detection, the

same method as before was then applied. Fig. 11(a) shows

the obtained ROC curve. Fig. 11(b) shows Dice’s curve with

respect to the decision threshold Sb. The optimal threshold

equals Sb = 0.61 with Dc = 80.5% (point A in Fig. 11(b)),
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(a) (b)

Fig. 11 Quantitative evaluation of the rain pixels detection algorithm on actual images: (a) ROC curve, TPR = f (FPR). (b) Accuracy versus the

threshold Sb.

TPR = 93.0% and FPR = 41.1%. Both Dice’s curves ob-

tained with synthetic or actual images have approximately

the same flat shape for Sb ranging from 0.1 to 0.7. The influ-

ence of Sb is thus limited within this interval. Thereafter, we

consider a threshold of Sb = 0.6.

The entire process, from image acquisition up to the de-

tection of rain pixels, is illustrated in different weather con-

ditions in Fig. 12. Fig. 12(a) shows hail presence detection

and the segmentation of hail pixels. Fig. 12(b) shows rain

presence detection and the detection of rain pixels. Fig. 12(c)

shows snow presence detection and the detection of snow

pixels. In each case, the original image, the BG, the FG, the

HOS and the detection of rain pixels are shown. The black

curve represents the estimated Gaussian-uniform mixture.

The green curve is the Gaussian distribution. The red curve

is the uniform distribution. The cyan curve is the distribution

smoothed by the Kalman filter decomposed into the Gaus-

sian distribution in blue and the uniform distribution in yel-

low.

7 Estimation of Rain Intensity

In the previous sections, we showed how the HOS can be

used to accurately estimate the rain orientation as well as

how to classify the rain pixels. In this section, we show that

the HOS provides a good proxy for the estimation of the rain

density.

7.1 Related Works

The rain intensity is usually estimated using rain buckets

[28] or optical devices [29]. Based on the visual effects of

rain, Garg and Nayar [4] developed a camera-based rain

gauge. In this aim, they observe the size and the numbers

of drops in a small volume of rain over time. To prevent the

overlapping of rain streaks, the camera is set to a low depth

of field. Then in each image, rain streaks are segmented and

a rain intensity is deduced by means of the estimation of the

local rain density.

7.2 Contribution

In our case, the camera is in focus at the infinite and has au-

tomatic settings. Contrary to Garg and Nayar’s approach [4],

it is thus not possible to obtain an accurate estimate of the

rain intensity. Nevertheless, we are able to derive a relative

estimate of rain density by counting the number of rain pix-

0
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Fig. 13 Rain accumulation observed by the Montsouris weather sta-

tion (Paris downtown) of Météo France (French national weather in-

stitute) during the storm of the 14th July 2010. The rain accumulation

observed every hour is plotted in green bars.
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(a) (b) (c)

Fig. 12 First row: Original image. Second row: BG. Third row: FG. Fourth row: HOS with the different fitted curves. Fifth row: Rain pixels

detection using Sb = 0.6 (the rain pixels are in green, the noise pixels in red and the objects filtered by size selection rule in blue). (a) is from the

hail sequence; (b) is from the rain sequence; (c) is from of the snow sequence.
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Fig. 14 Illustration of the ability of the method to estimate the rain intensity on videos grabbed in Paris on the 14th July 2010. First row: Video

frame corresponding to the red point of the graph below. Second row: Detected rain pixels. Third row: Corresponding HOS. Fourth row: Estimated

rain density versus time.

els which have been detected by the approach detailed in

section 6. This approach is more or less the method pro-

posed by Garg and Nayar [4]. However, we think that it is

not necessary to detect the rain pixels to have a rough idea

of the rain intensity. Indeed, the HOS provides a good proxy

of the rain intensity R as following:

R≈ S Π (31)

where S denotes the surface of the HOS before normaliza-

tion and Π the surface of the Gaussian distribution in the

HOS.

7.3 Experimental Evaluation

We have carried out experiments to check the quality of our

estimator of rain intensity. In this aim, different videos have

been grabbed during a severe summer storm which lasted

a half day nearby Paris on the 14th July 2010. In the same

time, we have collected the data from the nearest weather

station which is approximately 4 km away from the place

where the videos were grabbed. These data are shown in

Fig. 13. In Fig. 15, we plot our estimation of the rain in-

tensity R versus the number of rain pixels, by using data

collected during the peak of the storm. Both descriptors are

strongly correlated.

We have also estimated R on different videos grabbed at

different times of the day (10:37 - light rain, 11:45 - heavy

rain, 13:06 medium rain, 14:58 - no rain). R is plotted ver-

sus time on the fourth row of Fig. 14. In the first row, we

show the image corresponding to the red point of the graph.

In the second row, we show the rain pixels which have been

detected. In the third row, we show the corresponding HOS.

R is coherent with the meteorological data which are shown

in Fig. 13, as well as with the video frames, except in the

third column. Indeed, the estimated rain intensity is very

low. This is due to a strong wind which changes the rain

orientation during the storm. Consequently, the Kalman fil-

ter does not converge correctly and the Gaussian-uniform
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Fig. 15 Rain intensity estimation R versus the number of rain pixels.

The rain intensity estimate is directly obtained by the HOS. The tem-

poral integration of rain pixels was originally proposed by Garg and

Nayar [4]. Both estimators are strongly correlated.

mixture is badly estimated. The rain intensity is thus also

badly estimated. The Kalman filter can be adapted to cope

with situations like rain storms. However, this will increase

the false positives detections during rain episodes.

8 Potential Applications

In the previous sections, a method has been proposed and ex-

perimentally assessed which allows detecting rain episodes,

detecting rain pixels in rainy images and estimating rain in-

tensity as well as its orientation. These methods are mainly

based on the use of the HOS. In this section, we present

some potential applications which are related to road safety,

weather observation, improvement of the reliability of video

surveillance and rain rendering.

8.1 Detection of Safety Critical Weather Conditions

To monitor their networks, road operators use different sen-

sors, among which optical sensors, especially the cameras

which are the most convenient. Indeed, they are contact-less

and they can serve multi-purpose applications: Incident de-

tection, traffic monitoring, etc. The presence of bad weather

conditions alter the operation of the transport system in dif-

ferent ways. It is obviously a source of accidents caused

by reduced friction or reduced visibility [30]. It is also a

source of reduction of highways capacity, which may in-

crease traffic congestion. Hence, a traffic monitoring sys-

tem must take into account adverse meteorological condi-

tions, so as to help the road operator to take decisions as

fast as possible. In other words, it must detect and quantify

the meteorological conditions in real-time, in order to mini-

mize their possible consequences, for instance by proposing

adaptive speed limits [31, 32]. For instance, wireless com-

munications were used in the European SAFESPOT project

to combine data issued from vehicles sensors and roadside

sensors [33] in order to prevent accidents. Different applica-

tions related to weather conditions were developed. To reach

this goal, a camera-based sensing system as well as a data

fusion methodology was designed to detect the weather con-

ditions [5], in which the proposed algorithm is used.

8.2 Weather Observation

In the region of Paris (France), the storm of the 14th July

2010 has caused numerous perturbations on the regional rail-

way network and on the traffic of the international airport.

These facts illustrate the needs for accurate weather predic-

tions so as to prevent the paralysis of transports. The weather

prediction and the observation are closely linked together.

To refine their numerical schemes and calibrate them ac-

curately, meteorological institutes need weather observation

data at same spatial scales. As illustrated in section 7, we

were able to monitor the storm locally. Such low cost data

collection is thus of great interest for meteorological insti-

tutes.

8.3 Improvement of Video Surveillance Reliability

The operation range of video-surveillance systems is altered

by the presence of degraded weather conditions. By detect-

ing the weather conditions, it is possible to detect that the

system is inoperative or to improve its operation. This method-

ology has been followed so far for the problem of degraded

illumination [34] and the assessment of the operation range

in foggy weather of optical sensors [35]. Like contrast restora-

tion methods which improve the visual surveillance in foggy

weather [2,36–38], the proposed algorithm improves the re-

liability of video surveillance in rainy weather. Indeed, by

detecting and filtering rain pixels in the FG, the detection of

objects like cars or pedestrians, is simplified. This improves

the security of the system.

8.4 Rain Rendering

Garg and Nayar [22] have shown that a realistic rendering

of rain can be obtained based on the observation of natural

image sequences in rain, by taking into account how light

is refracted by rain. As pointed out by Barnum et al. [9],

the combination of detection and of synthesis of rain offers

great advantages since the illumination is already correct.

By using the HOS, the distribution of the orientation of the

rain can be captured and used to render the orientation of

rain streaks more realistically. Samples of synthesized rain

is shown in Fig. 7, based on the database of Garg and Nayar.

This process is used in section 3 to evaluate the HOS.
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9 Link with Rain Detection and Removal Methods

Various methods have been proposed to remove rain from

images [4, 6–9]. Even if these methods and the method here

proposed do not have the same objective, they share com-

mon ideas and principles. In this section, we compare the

different methods qualitatively and quantitatively. In partic-

ular, we show how they complement each other.

9.1 Qualitative Comparison

The approach proposed by Hase et al. [6] uses a temporal

median filter exploiting the fact that pixels are more often

clear than altered by rain. This idea is extended by Zhang et

al. [7] who proposed to detect rain using a k-means cluster-

ing algorithm (k = 2) and additional chromatic constraints

to reduce false detections. However, this method cannot be

used online because the k-means algorithm needs to be ap-

plied on the entire video sequence. Garg and Nayar [4] pro-

pose a method that uses the optical properties of a falling

rain drop in order to segment the video scenes. The false

detections are reduced via a photometric constraint which

models the visual appearance of rain streaks. Brewer and

Liu [8] detect rain streaks using their intensity spikes. They

reduce false detections using their aspect ratio and their ori-

entation. Barnum et al. [9] propose a global visual appear-

ance model to identify the frequency-domain behavior of

the rain. They present a filter in the frequency-domain to

reduce its visibility. Finally, we propose to detect rain pres-

ence by using an histogram of the orientations of streaks

(HOS). This HOS can then be used to detect rain pixels and

to estimate the rain intensity.

Like Garg and Nayar [4] and Barnum et al. [9], we use

a global constraint to detect the rain pixels. Garg and Na-

yar [4] detect the temporal correlation of rain using a binary

field. Barnum et al. [9] directly use an appearance model of

the rain in the frequency domain. Unlike Garg and Nayar [4]

and Barnum et al. [9], we use of a soft-voting algorithm to

accurately compute the distribution of the rain orientation

by using the method of geometric moments applied to im-

age blobs. This approach was also proposed independently

by Brewer and Liu [8], but was not experimentally assessed.

Apart from the method from Barnum et al. [9], the different

methods use more or less the same photometric constraint.

In this article, we show that this constraint can be adapted

to the use of a classical background subtraction technique

(MoG). Like Brewer and Liu [8], we compute the orienta-

tion of rain streaks locally. Whereas Brewer and Liu [8] di-

rectly reject the rain streaks which do not respect predefined

orientations, we prefer to first compute the global orienta-

tion of the rain. Then, we reject the rain streaks which do

not have the correct orientation. Finally, unlike other exist-

ing approaches, we apply our method on videos grabbed in

clear weather and we propose a method to distinguish rainy

weather from clear weather using the HOS.

9.2 Quantitative Comparison

Our method does not aim primarily at segmenting the rain

pixels in videos with rainy weather. Indeed, it aims at detect-

ing rain presence in image sequences for visual surveillance

purposes. To our best knowledge, no similar other method

exists in the literature with which we could be compared.

Nevertheless, the methodology we use to detect rain pres-

ence can also be applied to detect rain pixels, like previous

methods [4,6–9]. In this paragraph, we propose to prove how

complementary our method is with other rain segmentation

methods.

In this aim, we implemented existing methods or used

existing results which were available online. Tests were car-

ried out based on the video sequences shown in section 7.

These videos are challenging ones since they contain differ-

ent rain intensities. The camera moves slightly due to the

storm. The background environment is complicated due to

the moving trees. The method from [6] was easy to imple-

ment. Unfortunately due to the moving camera, the tempo-

ral median value had to be computed on only three images

(n = 3). The results were not entirely satisfactory due to the

moving and textured background. We then implemented the

method of Garg and Nayar [4]. Due to the small size of rain

particles, we were not able to use their binary field correctly.

We were able to use their photometric constraint, see (7). We

then removed the local computation of rain orientation from

the method from Brewer and Liu [8]. Only the photomet-

ric constraint of (7) remained. However due to the complex

background, this constraint was too strong and the result-

ing rain streaks were very fragmented. Finally, we used the

following constraint:

In− In−1 ≥ c and In− In+1 ≥ c (32)

This constraint gave better results that the median filter (n=

3) and enabled us to use our method correctly. The results

shown in Fig. 14 were obtained with this method. These re-

sults illustrate the ability of our method to use pixel based

segmentation methods, e.g. [4, 6]. We also tried to adapt

the method of Zhang et al. [7] to an online use but with-

out success. Finally, we compared our method with the one

from Barnum el al. [9]. Due to the relative complexity of the

method, we used the videos of results which have been put

online by the authors. As expected, we were able to compute

the HOS using their segmentation of rain streaks. Further-

more, we were able to improve their segmentations. Some

results are shown in Fig. 16. The rain pixels are put in green

whereas noise pixels are put in red. In the "mailbox" se-

quence, the edges of the mailbox are detected as noise as
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(a) The mailbox sequence: The edges of the mailbox are detected as noise, as well as part of the bushes.

0

h(θ)

π

(b) Walkers in the snow: The umbrella, the back and the feet of the walkers are detected as noise.

0 π

h(θ)

(c) Windowed building: The surveillance camera is detected as noise.

Fig. 16 Illustration of the complementarities between the spatio-frequency method of Barnum et al. [9] and our method. Left: Original sample

image of rain videos. Middle: HOS computed using the segmentation results of Barnum et al. Right: Classification of the results of Barnum et al.

in the rain pixels in green and in the noise pixels in red.

well as part of the bushes. In the "walkers" sequence, the

umbrella, the backs and the feet of the walkers are detected

as noise. In the "building" sequence, the surveillance cam-

era is detected as noise. These results are not surprising since

Barnum et al. fit their model to the videos assuming that the

orientation of rain follows a uniform distribution ±0.2 rad.

These results illustrate the advantage of our method based

on a global segmentation.

In this section, we have shown that our semi-global me-

thod is generic enough to be used in conjunction with other

rain segmentation methods, whether they use local approaches

or global approaches. Furthermore, we were able to improve

their results. Our rain detection method is thus complemen-

tary with existing methods.

10 Discussion and Perspectives

The algorithm is moderately demanding in terms of com-

puting power. Our algorithm was developed with Microsoft

Visual C++ .Net 2003 and RTMaps 3.2.2 using OpenCV 1.0.

The computer used is composed of an Intel Core 2 Cpu 6600

(2.40 Ghz) processor and 3GB of ram and the operating sys-

tem is Windows XP sp3. Using this configuration, the hail

sequence (360x280 resolution) was processed at 15 Hz. For

the rain sequence (resolution of 960x540), the frame rate is

about 5 images per second. For the snow sequence (resolu-

tion 1360x1024), the frame rate is about 2 images per sec-

ond. The frame rate not only depends on the resolution of

the video, but on the number of streaks present in the image

as well.

The proposed algorithm is able to detect rain presence

with a good accuracy. Because we rely on a classical back-

ground subtraction method to segment potentiel rain pix-
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els, our algorithm can be quite easily integrated in an ex-

isting video-surveillance platform. As such, it is thus sensi-

tive to camera motion. In this case, image stabilization tech-

niques could be useful. However, the proposed algorithm

could also use other segmentation methods of rain streaks,

such as those proposed in [4, 7–9], which are less sensitive

to camera motion or already make use of image stabilization

techniques.

The dataset used to test the method is made of different

video sequences grabbed by ourselves. Consequently, this

dataset may appear to be limited, but there is no other avail-

able on line. To capture a greater variety of scenes, we are

equipping different test sites with video cameras as well as

with rain sensors and visibilitymeters.

The type of falling particles is also an interesting topic.

Indeed, making the difference between snowfalls and rain

showers has important applications, e.g. for winter mainte-

nance of roads. Following the idea proposed in [10], we have

estimated the α of the snow and of the rain based on the fol-

lowing expression:

P = αF +(1−α)B (33)

where α is the transparency factor of the rain or of the snow,

P is the intensity of the current pixel, F is the intensity of the

FG pixel and B is the intensity of the BG pixel. Since snow

is opaque and rain is transparent, we were expecting differ-

ent values of α in rain and in snow. Unfortunately, we were

not able to obtain satisfactory results, because the visual ap-

pearance of rain or snow depends primarily on the camera

parameters and the environment (sun position, background),

see (2).

Finally, the main problem of the proposed system is the

ability of the camera to see rain. The rain with a small inten-

sity is difficult to be seen even for human eyes, and thus to

be detected with the proposed method. Our method, based

on the MoG, is able to detect some snow episodes as well

as strong rain. In the presence of a light rain, the MoG is no

longer relevant. The photometric selection rule proposed in

(32) is able to detect rain pixels in case of rain with a small

intensity as well as strong rain. However in the absence of

rain, this simple method may also detect rain presence. We

thus believe that rain presence detection and the rain inten-

sity estimation are two different applications which are dif-

ficult to run simultaneously. Nevertheless, guidelines to re-

duce or increase the visibility of rain in images by adjusting

the camera parameters are proposed in [4]. They could be

followed to improve the overall system. With the same idea,

techniques which extend the depth of field [39] could help

to increase the visibility of rain streaks close to the camera.

In this way, we may be able to build a camera-based gauge

in focus at the infinite.

11 Conclusion

In this article, a method is proposed which consists in de-

tecting rain by using video cameras. To ease the integra-

tion of the algorithm in video-surveillance systems, we use

a classical MoG model to separate the foreground from the

background in image sequences. Because rain is a dynamic

weather phenomenon, the foreground is used to detect it.

From the foreground model, selection rules based on pho-

tometry and size are used in order to select the potential

blobs of rain. Then we compute a Histogram of Orienta-

tions of Streaks (HOS) with the method of geometric mo-

ments. The HOS is assumed to follow a Gaussian-uniform

mixture model, where the Gaussian distribution represents

the orientation of the rain and the uniform distribution rep-

resents the orientations of the noise. We use an EM algo-

rithm to separate these two distributions as well as a GoF

test coupled with a Kalman filter and a test on the surface

of the Gaussian distribution to deduce the information on

rain presence. When rain presence is detected, we proceed

with detecting the pixels of rain in the foreground model

or with estimating the rain intensity. The applications of the

method are numerous, among them the video-surveillance of

road networks, the improvement of the reliability of video-

surveillance systems are shown and rain rendering. Various

methods have been proposed to remove rain in images. Even

if these methods and the method proposed in this article do

not have the same objective, they share common ideas and

principles. We have compared the different methods qualita-

tively and quantitatively. In particular, we have shown how

they complement each other. Numerous experiments have

been carried out to rate the proposed method, which rely on

the use of synthetic images as well as actual video sequences

grabbed by ourselves in different weather conditions such as

clear weather, hail, rain, snow and storm. Finally, we have

proposed different perspectives for future work.
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