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Evaluation of Road Marking Feature Extraction

Thomas Veit, Jean-Philippe Tarel, Philippe Nicolle and Pierre Charbonnier

Abstract— This paper proposes a systematic ap-
proach to evaluate algorithms for extracting road
marking features from images. This specific topic is
seldom addressed in the literature while many road
marking detection algorithms have been proposed.
Most of them can be decomposed into three steps:
extracting road marking features, estimating a geo-
metrical marking model, tracking the parameters of
the geometrical model along an image sequence. The
present work focuses on the first step, i.e. feature ex-
traction. A reference database containing over 100 im-
ages of natural road scenes was built with correspond-
ing manually labeled ground truth images (avail-
able at http://www.lcpc.fr/en/produits/ride/). This
database enables to evaluate and compare extractors
in a systematic way. Different road marking feature
extraction algorithm representing different classes of
techniques are evaluated: thresholding, gradient anal-
ysis, and convolution. As a result of this analysis,
recommendations are given on which extractor to
choose according to a specific application.

I. INTRODUCTION

The extraction of road markings is an essential step for
several vision-based systems in intelligent transportation
applications as for example Advanced Driver Assistance
Systems (ADAS). Of course, these applications include
lane detection for the lateral positioning of vehicles.
But, maintenance tasks such as road marking quality
assessment and more generally road scene analysis also
rely on a precise computation of the position of road
markings.

Most road marking detection algorithms consist of the
following three steps:

1) road marking feature extraction,

2) geometrical model estimation,

3) tracking and filtering of the parameters of the
geometrical model along an image sequence.

This article focuses on the first step when applied on
all the image. The main reason for this is that a per-
formance improvement at this stage will be beneficial
to the following steps of the process. Another reason
is that, depending on the application, the second and
third step do not always exist, while the first is present
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in all applications based on road marking analysis, even
in expectation based approaches (specifically, in the re-
initialization process).

Different extractors have been proposed over the years
to estimate the position of road markings parts in images.
These extractors are based on the characteristics of the
road markings, either geometric, photometric or both.
The aim of the present work is to assess the performance
of these extractors on a reference database and to is-
sue some recommendations on which extractor suits for
which application. This evaluation does not only rely on
the performance of the extractors in terms of detection.
It also points out other characteristics of the algorithms
such as their computational complexity or the need for
additional knowledge to achieve a given performance
level.

The paper is structured as follows. Section II presents
related work. Section IIT describes the six road marking
extraction algorithms and the two variants which are
evaluated. The database built for the evaluation, the
ground truth labeling process and the evaluation metrics
are detailed in Section IV. Section V discusses the exper-
imental results obtained after processing the reference
database with the six algorithms. Finally, Section VI
gives concluding remarks and perspectives.

II. RELATED WORK

Despite the fact that road feature extraction is the first
step of any lane detection system, it is too often par-
tially described in papers describing marking detection,
even if numerous variants were proposed. A thorough
survey of lane detection systems is proposed in [1]. For
a broader study of video processing applied to traffic
applications (including lane detection) the reader is also
referred to [2]. In this paper, six representative road
feature extractors and two variants based on threshold-
ing, gradient analysis and convolution were selected. For
the subsequent steps involved in lane marking detection
systems, the reader is referred to [3] for a robust version
of the estimation step and to [4] for the tracking step.

To our knowledge, only a small number of papers about
road marking detection include systematical evaluation
results. Moreover, detection systems are most of the time
evaluated as a whole. For example, in [1] a GPS based
ground truth is built using a second downward looking
camera and the evaluation metrics are only related to the
lateral position of the vehicle. A lane detection system
is also evaluated on synthetic images in [5]. Again, the
whole lane detection system is evaluated by analyzing
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the error on the estimated parameters of the geometrical
road model.

A systematical evaluation of the extraction step, as
we propose in this paper, involves associating a ground
truth to every image of the test set. This can be fastidious
when large image sets are considered. Automatic ground
truth determination has been proposed in [6] based on
thresholding. The main advantage of this technique is
to allow automatically labeling large image sets, even it
is still error prone and needs to be supervised. We thus
preferred to label ground truth images manually in order
to obtain higher accuracy. Let us note that the evaluation
framework proposed in [6] was applied to small windows
around road markings and not the whole road scene
image.

III. ROAD MARKINGS EXTRACTION ALGORITHMS

Many local extraction algorithms for road marking
features have been proposed. We restrict ourselves to
algorithms extracting features from a single image cap-
tured by a camera in front of a vehicle. Extractors based
on motion or stereo will not be considered. Markings
are standardized road objects. More specifically, lane
markings are bands of a particular width painted on the
roadway, most of the time in white. Hence, single image
extractors are generally based on two kinds of charac-
teristics: geometric and photometric. These criteria are
generally combined in different ways, and used often
partially, depending on the local extraction algorithm.
Existing road feature extractors can be classified with
respect to the kind of feature they rely on:

« geometric selection: segments [7],
« geometric and photometric selection: pair of positive
and negative gradients [8], [9], [10], [11], response to
a convolution filter at a given scale [12], [1], ridges
at a given scale [5],
» photometric selection: light pixels [13], [14], [15],
edges [4], [16].
The set of extractors we compare in this paper ranges
from mainly geometric selection to mainly photomet-
ric selection. They will be presented in this particular
order. In all that follows, Tz will denote the detection
threshold. This threshold is either on the intensity level,
the magnitude of the gradient or a filter response in
gray levels. Different kinds of (possibly partly worn out)
markings may be present in an image. Therefore, it is
reasonable to define an acceptability range, [S,,,Sy], for
selecting horizontal segments as road marking elements,
depending on their width in pixels.

Our comparison is not exhaustive, and other mark-
ing feature extraction algorithms, such as morphologi-
cal based, texture based or learning based extractors,
which are seldom discussed in the literature, will not be
taken into consideration. We also mainly focus on lane
markings rather than special markings such as arrows or
crossings.

A. Positive-negative gradients

The positive-negative gradients extractor is mainly
based on a geometric selection with respect to feature
width, see [8], [9], [10], [11]. Due to the perspective effect,
this width constraint can be handled in two possible
ways. Both approaches rely on a planar road assumption
and the knowledge of the horizon line.

The first approach consists in performing an inverse
perspective mapping, to build a top-view image of the
road [9]. The second one consists in taking into account
that the marking width decreases linearly in the image
from the bottom to the horizon line and reaches zero
at the horizon line [8], [10], [11]. This implies that the
minimal width S,,(x) and the maximal width Sy(x) are
linear functions of the vertical image coordinate x. The
second approach is in practice faster and will thus be
used in the positive-negative gradient algorithm.

This algorithm processes each image line below the
horizon independently, in a sequential fashion. It first
selects positive intensity gradients with a norm greater
than a given threshold, Tg. Then, the algorithm looks
for a pair of positive and negative gradients fulfilling
the width constraint. For each image line x, let y;
be a horizontal image position for which the horizontal
gradient is greater than the threshold Tg. Let ye,q be the
pixel position where the horizontal gradient is lower than
—Tg. The sign of the threshold is selected in order to ex-
tract dark-bright-dark transitions. A marking feature is
extracted if Yeng — Yinir lies within the range [S,,(x), Sy (x)]
and if the image intensity between y,,s and y;; is higher
than the image intensity at y.,q and yj;. The extracted
feature is the segment [Yinir, Venal-

Contrasts being smooth in general, the positive-
negative gradient algorithm may detect several beginning
position y;,; associated to the same marking. To tackle
this problem, the extractions are superimposed in an
extraction map, of the same size as the image. We
also experiment with another variant where only local
intensity gradient maxima greater than T are selected
as in [9], rather than using all gradients higher than Tg.
This local maxima variant is tested in our experiments
under the name “strong gradient”.

Notice that this extractor is specifically designed for
markings that appear vertical in the image, so horizontal
markings in the image will not be selected. However, due
to the width tolerance this extractor is also able to detect
curved markings.

B. Steerable filters

In the positive-negative gradient algorithm, each line
is processed independently, the spatial continuity of lane
markings is not exploited. This can be a handicap when
deeply eroded markings are present. Steerable filters were
applied for marking extraction in [1]. This kind of filter,
able to extract bright stripes, is appealing since it allows
to perform image smoothing and to select markings both
with geometric and photometric criteria. Sharing some
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similarities with steerable filters is the ridge detector
proposed in [5].

The main advantage of steerable filters is that they are
obtained as linear combinations of three basis filters cor-
responding to the second derivatives of a two-dimensional
Gaussian distribution:
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The linearity of convolution enables to compute the
response to the filter Gg = Gyccos?0 + Gyy2c0s0sin0 +
Gyysin®@ for any orientation 8 € [—%, %] as the following

linear combination:
Io=1I cosze—&—lyy sin26+1xy2005651n 0, (1)

where Iy, I, and Iy, stand for the intensity image con-
volved respectively with the basis filters Gy, Gy, and Gyy.
Differentiating (1) with respect to 6 yields the ori-
entation, up to T, that maximizes the response of the
steerable filter:
Ly .
arctan le)I}} if Iy —1,, >0,
( +arctan1 1 ) if Iy —Iy)<0 (2)
if Iy —1,, = 0.
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Let us note that these equations are the corrected version
of those given in [1]. The orientation of the feature is
constrained to the range [—80°,80°], where the origin of
orientations corresponds to the vertical image coordinate
axes, in order to reject horizontal ridges.

The variance parameter 6 controls the scale of the fil-
ter, and one can show that the filter response is maximal
for a perfect stripe of width 26. Therefore, ¢ is set to
half the width of the markings to be detected in the
image. Steerable filters can be applied optimally only to
markings having one specific width. As a consequence,
it is necessary to compensate the effect of perspective
by a preliminary application of the inverse perspective
mapping.

In order to evaluate the contribution of steerable filters
to lane markings extraction, the vertical filter Gy, alone
was also applied as a variant. This simplified filtering
reduces the number of image convolutions from three to
one and also avoids the computations of 6,,, and the
corresponding filter response.

In both cases, the final decision is given by a threshold
T on the filter response.

C. Top-hat filter

Steerable filters are optimal for one marking width
and are not able to tackle a large width range. We thus
propose a top-hat filter which performs a convolution
with a shape as shown in Fig. 1 similarly to [12], [§]
but it is performed at many scales. Each line is pro-
cessed independently, which avoids performing an inverse

Fig. 1. Top-hat filter for marking extraction.

perspective mapping. Unlike steerable filters, the top-hat
filter is dedicated to vertical lane markings.

It is well known that the convolution with a top-hat
filter can be performed in only 4 operations: 2= (2(C(y+
s)—C(y—s))— (C(y+2s) —C(y—2s))), independently of
its width w = 4s, by using the cumulative function of the
intensity profile along each line, C(y). This convolution
is performed for several widths w and the local maxima
in the feature space (w,y) are considered as marking
features. The center of the marking element is given by
the value of y at the maximum and its width, by w at
the maximum. The final decision is made according to a
threshold T on the filter response.

D. Global threshold

Markings being light on a gray background, a simple
minded approach is to extract them locally by a global
gray level thresholding with threshold 7. It seems clear
that this approach will not perform well due to variations
of lighting conditions within the image [17]. However,
we also included this purely photometric algorithm as a
reference, to quantify the gain the other algorithms are
able to achieve.

E. Local threshold

One way of tackling the problem of non uniform
lighting conditions in a thresholding algorithm is to use
local statistics of the image intensity within a small
neighborhood of the current pixel. If (x,y) is the current
pixel position, and I the local image intensity mean, the
acceptance test is now I(x,y) > Tg +1(x,y). To deal with
perspective, the averaging is performed independently on
each line, and the size of the image averaging decreases
linearly with respect to the line height. In practice, we
set the averaging size to 12Sy(x). All extracted pixels
are saved in an extraction map and horizontally con-
nected features wider than S,,(x) are selected as marking
elements. This extractor mainly performs a photometric
selection, followed by a partial geometrical selection.

F. Symmetrical local threshold

We experiment with another extractor which is mainly
photometric, the so-called symmetrical local threshold.
This extractor is a variant of the extractor first intro-
duced in [13], [14]. Again, every image line is processed
independently in a sequential fashion. On each line at po-
sition x, it consists of three steps. First, for each pixel at
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position y, the left and right intensity averages are com-
puted, i.e the image average Ij.r,(y) within |y —6Sy(x),y]
and the image average ILigy(y) within Jy,y 4 6Sp(x)].
Second, given threshold Ty, the pixels with intensity
higher than both TG +I.5; and Tg + Ien are selected.
Third, sets of connected pixels in the extraction map
wider than S,,(x) are considered as marking elements.

G. Color images

The previously described algorithms implicitly assume
that the input image is a gray level image. Colored
elements of the scene may, however, appear as light gray
in a luminance image. Hence, it is interesting to consider
a colorimetric criterion in the decision process, as no-
ticed in [8], [15]. To this end, our approach consists in
first applying any of the previously described algorithms
separately on each color channel and then, combining the
three obtained extraction maps using a logical “and”.

IV. EVALUATION DATA SET, GROUND TRUTH
LABELING AND EVALUATION METRICS

A. Evaluation data set

To assess the performance of the marking feature
extractors described in the previous section, we built a
database of road scene images with ground truth.

The database contains 116 road scene images captured
on various sites by the Network of the French Transporta-
tion Department. The images selection was performed
with the objective of sampling:

« variable lighting conditions, such as shadows, bright

sun, cloudy weather,

o variable scene content, from dense urban to coun-

tryside,

« variable road types, such as highway, main road,

back-country road.

All the 116 ground truth images were manually labeled
with three kinds of labels (see Fig. 2 for some examples):

1) lane markings, i.e. lateral road markings,

2) other kinds of road markings such as pedestrian

crossings, highway exits lanes...

3) not a road marking.

To refine our analysis the database is also divided into
three sub-classes:

1) curved road images,

2) adverse lighting conditions and eroded markings,

3) straight road under good lighting conditions and

with good quality markings.

This database is available on LCPC’s web site
http://www.lcpc.fr/en/produits/ride/ for research
purpose and in particular to allow other researchers to
rate their own algorithms. The proposed database is
mainly designed for the evaluation of lateral road lane-
markings extraction and will be completed and extended
in the near future. However, we have anticipated over the
development of this database by labeling also other kinds
of markings in particular to allow the evaluation of more
general road marking extractors.

B. FEvaluation metrics

The comparison of the ground truth images with the
extraction maps obtained by the different lane markings
feature extractors presented in Sec. III enables to evalu-
ate the performance of each extractor. All the presented
extractors rely on a detection threshold Tg. Therefore,
to evaluate the different algorithms objectively, the per-
formances of each extractor is computed for all possible
values of threshold T within the range [0,255].

Two classical evaluation tools are used: Receiver Op-
erating Characteristic (ROC) curves and Dice Similarity
Coefficient (DSC, also named F-measure). ROC curves
are obtained by plotting the True Positive Rate (TPR)
versus the False Positive Rate (FPR) for different values
of the extraction threshold Tg. The larger the area under
the ROC curve, the better the extractor. Nevertheless,
ROC curves should be analyzed carefully in case of
crossing curves. Moreover, the proportion of pixels cor-
responding to lane markings in the image being small,
about 1—2%, only the left part of the ROC curve is
relevant for lane detection algorithms.

This is why we also use the DSC for complementary
analysis. The DSC measures the overlap between the
ground truth and the extraction maps provided by the
different algorithms. It penalizes False Positives (FP) and
is more suited for evaluating the detection of small image
structures such as road markings. The Dice Similarity
Coeflicient is defined as:

psc=—_ TP 3)
(TP+FP)+P

where TP is the number of true positives, FP is the
number of false positives and P is the number of positives
to be detected. Plots of the DSC v.s. the value of T are
shown in the next section. The value at the maximum
of the DSC curve is of importance to compare the
different extractors, since it corresponds in some way to
an optimal value of the threshold T and the best possible
performance of the algorithm. The width of the peak
around the maximal value also informs on the sensitivity
of the extractor with respect to the threshold tuning. The
DSC is commonly applied in medical image analysis for
evaluating the segmentation of small structures.

V. EXPERIMENTAL COMPARISON

This section presents the results of the experimental
comparison of the road marking extraction algorithms.

A. Results on the whole database

The six algorithms of Sec. III were applied to the whole
images in the database. For each algorithm, the ROC and
DSC curves are plotted on Fig. 3. ROC curves are plotted
only in the range [0%,5%] of False Positive Rate (FPR).
Since the road markings represent about 1 —2% of the
image, it makes no sense to analyze ROC curves when
the FPR is above 5%. Furthermore, ratios FP/(FP +
TP) above 50% would imply robustness problems for
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First column original image. Second column ground truth (black: lane markings, gray: special markings, white: non-marking).

Third-eighth column best extractions (in the sense of the Dice coefficient) with six different algorithms (from left to right): global threshold,
+/— gradients, steerable filters, top-hat filter, local threshold and symmetrical local threshold.

the subsequent processing step, namely the geometrical
model estimation. Most model estimation methods are
unable to handle an outlier proportion larger than 50%
in theory. The ROC curves are well suited for a broad
ordering of method performance. For algorithm that have
close performances, the DSC curves are more adapted.

From Fig. 3, we conclude that global thresholding
is clearly not advisable even if the threshold is chosen
optimally. However, the curves corresponding to the
global threshold can be used as a reference to quantify
the improvement obtained by the other extractors.

Positive-negative gradient performs slightly better
than global thresholding but significantly worse than the
four others. The four top extractors are, in decreasing
order: symmetrical local thresholding, local thresholding,
the top-hat filter and steerable filters. The fact that sym-
metrical local threshold performs best may be due to the
simplicity of the assumed marking model. The variant
of the positive-negative gradient extractor consisting in
focusing on local maximum of the gradient performs even
worse as shown on Fig. 4.

To our surprise, on the whole database steerable filters
are outperformed. Their additional complexity is, hence,
not justified. Moreover, the necessity of computing a
perspective inversion of the image to obtain a constant
width of the markings is clearly a drawback since it
requires the knowledge of additional camera parameters.
Invariance to orientation is not necessary and results in
more false alarms. Results on the database are better

when focusing on vertical ridges as shown on Fig. 5. The
simpler variant consisting in applying only the vertical
filter Gy, performs as well as the steerable filter, while it
is computationally less expensive. The benefit of vertical
averaging could not be established since the top-hat filter
which is applied separately on each line performs as well
as the steerable filters, if not better.

From our point of view, steerable filters are only
justified if the geometrical model fitting step exploits
orientation information. Indeed, steerable filters not only
provide the position of the road marking features but also
measure its orientation.

B. Results on subsets of the database

The first sub-database consists of images where the
road marking are clearly visible and no specific difficulties
prevent from detecting it. The performance of the top
four extractors are closer to each other and the overall
gain with respect to the simple global thresholding is
reduced (cf. Fig. 6).

The second subset of images groups images that are
especially difficult to process: low contrast of road mark-
ings, adverse lighting conditions (bright sun, shadows).
This time the gap between the top four extractors and
the simpler method becomes larger. Local thresholding
extractors appear to be very well adapted for processing
this type of images (cf. Fig. 7).

Finally, the last image subset consists of images with
road markings presenting high curvature. As shown on
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Fig. 8, on this subset the performance of the local
thresholding extractors decrease. Let us emphasize that
on this subset the vertical filter Gy, the simpler variant of
the steerable filters, still performs as well as the steerable
filters themselves. On images presenting high curvatures
of the road marking one could be surprised by the good
performances of the extractors designed for detecting
vertical marking only. This is explained by the tolerance
of this extractors with respect to the width of the lane

markings.
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Fig. 6. ROC (top) and DSC (bottom) curves obtained on nor-
mal/easy images.

C. Taking color into account

We also evaluated the interest of using color images
rather than gray level ones. Fig. 9 shows the ROC and
dice curves obtained using symmetrical local threshold
and positive-negative gradients extractors on gray level
and color versions of the reference images. Looking at the
left part of the ROC curve and at the maximal value of
the dice curve, it is clear that the use of colors slightly
improves results even if the extractor is more selective
when using color images. The use of color, as explained
in Sec. III-G should thus be advised. The width of the
dice curves are roughly similar between gray levels and
colors. In term of complexity, any extractor is three time
slower on a color image than on its gray level version.
Therefore, when maximum speed is a strong requirement,
gray level images can be used with a slight loss in terms

of performance.
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colors slightly improves results.
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D. Wide markings

Previous results were obtained for [S,,Sy] =
[5¢m,20cm]. In order to extract more general road
markings such as zebras, arrows, pedestrian crossings,
we experiment with the five extractors which are, by
construction, suitable to extract marking within a
given width range. Steerable filter are excluded since
dedicated to a specific width. As shown in Fig. 3
for range [Sy,Su] = [Sem,45¢m] and Fig. 10 for range
[5cm,45¢m] and [5¢m,90cm], the quality of the extraction
slowly decreases when the range increases due to the
increasing difficulty of the extraction task. It can be
observed that the better performing extractors are not
too sensitive to variations of input parameters such
as the size range of marking extraction, which is an
appealing property.

VI. CONCLUSION

We presented an experimental comparison study on six
representative road feature extractors and two variants.
These algorithms were selected to sample the state of
the art in road marking detection. The comparison was
performed on a database of 116 images featuring variable
conditions and situations. A hand-made ground truth
was used for assessing the performance of the algorithms.

Experiments show that photometric selection must be
combined with geometric selection to extract road mark-
ings correctly. As usual in pattern recognition, this task is
not trivial, even for objects that seem quite simple, such
as road markings. In particular, pitfalls such as lousy
models and too selective models must be avoided. The
methodology we proposed in this paper is a helpful tool
for this purpose. For example, several times during this
study, we were faced with intuitively good variants, which
appeared to be inefficient in practice when systematically
evaluated on the test base.

As a result of our evaluation, it appears that for road
marking extraction, the selection should be mainly based
on photometric and colorimetric features, with just a
minimal geometric selection. The extractor which gave
the best result in the general case is the symmetrical
local threshold. Nevertheless, it is not necessarily the
optimal choice in particular cases such as curved roads,
as observed in our experiments. Additive advantages of
the symmetrical local threshold is its implementation
simplicity and its reduced computational complexity
compared to other extractors we experimented with, such
as steerable filters. These conclusion must be also mod-
erated by taking into consideration following next steps
of detection process in particular when an expectation
base approach is used.

Our goal is now to share our database with other
interested researchers, in such a way that the number
of compared extractors increases. We are also planing to
extend the database to other scenarios (e.g. rain, night
conditions, images taken behind a dirty windscreen) and
to many other special road markings. The database can
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be also used in the future to evaluate the estimation and
tracking steps independently and as a whole.
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