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Abstract— While road lane markings detection was exten-
sively studied, in particular for intelligent vehicle applications,
the detection and recognition of all kind of marking such
as arrows, crosswalks, zebras, words, pictograms, continuous
and discontinuous lane markings was drastically less studied.
However, it has many potential applications in the design
of advanced driver assistance systems, as well as for asset
management along itineraries. An algorithm is proposed which
is based on the following processing steps: marking pixel
extraction, detection using connected components before inverse
perspective mapping and recognition based on the comparison
with a single pattern or with repetitive rectangular patterns.
The proposed algorithm is able to detect and recognize repet-
itive markings (such as crosswalks) as well as single patterns
(such as arrows). We believe that the proposed algorithm can
be extended easily to solve the problem of the identification of
all types of markings.

I. INTRODUCTION

Road lane marking detection from onboard video sensors
was extensively studied over the last two decades, see˜[11]
for an overview. Indeed, many Advanced Driver Assistance
Systems (ADAS) rely on the estimation of the vehicle’s
position with respect to the road along time. This generally
implies the local detection of, at least, the left and right
lane markings. Examples of ADAS in which lane marking
detection is of major importance are road lane keeping
systems, lane departure warning systems, and collision avoid-
ance systems. While most systems require the determination
of the lateral position and orientation of the vehicle in its
lane, sometimes with road curvature, only a few of them
incorporate road marking recognition. This explains why
this problem was drastically less studied than lane markings
detection. However, solving both problems, i.e. detection
and recognition, may be beneficial to many ADAS. For
example, the knowledge of line modulation is necessary for
overtaking or lane change assistance systems. Such systems
also require the detection and recognition of left, straight
and right arrows. Indeed, the detection and recognition of all
kinds of markings should provide future ADAS with a more
comprehensive knowledge of the vehicle’s environment. De-
tection and recognition algorithms also provide important
information for road managers. Using a dedicated inspection
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vehicle, it allows to quickly update the knowledge about road
makings along an itinerary, for asset management.

It must be noticed that marking detection and recognition
are subject to several difficulties: presence of other white ob-
jects, low contrast in shadows, dust and erasing, occlusion by
vehicles and other obstacles. In road marking recognition, it
is important to distinguish between two classes of markings.
The first one is the class of regular lane markings, which
are rectangular shapes of different sizes. The second one
is the class of specific markings and contains more diverse
shapes, such as arrows, crosswalks, zebras, writings, and
pictographs. Our final goal is to propose a road marking
recognition algorithm which is generic in the sense that
the method can be used to recognize all kinds of lane and
specific road markings. However, the proposed work was
developed in the context of the French iTowns project, where
important landmarks such as arrows and crosswalks are used
to register aerial images with terrestrial images acquired
from an observation vehicle in urban environments. As a
consequence, the proposed algorithm focuses on arrows and
crosswalks in urban environment.

The paper is organized as follows. We first propose a short
review of related works in Sect.˜II. Then in Sect.˜III, we
describe the steps of the proposed algorithm: marking pixel
extraction, detection using connected components before
inverse perspective mapping, recognition based on compar-
ison with a single pattern or with repetitive rectangular
patterns. The experimental setup is presented in Sect.˜IV. In
Sect.˜V, the experimental results and the evaluation results
are discussed for crosswalks and 5 types of arrows.

II. RELATED WORK

Several specific marking detection and recognition algo-
rithms were proposed focusing on pedestrian crossings. For
instance, in˜[16] the detection and recognition method is
based on an accumulation technique, namely the Hough
transform; in˜[2], graphical models are used and, in˜[21],
projective invariants are exploited. More recently, in˜[18], a
crosswalk detection algorithm using edge extraction, Fourier
transform and Hough transform has been proposed. In [19],
[6], the algorithm consists in filtering images in frequency
domain and detecting hatched marking by a RANSAC ap-
proach. It is important to notice that these algorithms are ded-
icated to pedestrian crossings and can not be easily extended
to other kinds of specific markings, except zebra crossing
and hatched marking. A method based on stereovision was
also proposed in˜[20] which is dedicated to rectangular
road markings and thus to crosswalks. Note that we here
assume a single calibrated camera. Few works are focused



on arrows. In˜[5], arrows are detected by region-based seg-
mentation, followed by connected components extraction and
geometric selection on the obtained regions. Other features
are proposed to classify arrows according to their types:
shape signature and Fourier descriptors in˜[15], geometric
moments in˜[8], or a combination of geometric moments,
angles and histograms in˜[7]. In˜[13], a generative model
considering appearance variations is applied on standard road
markings to create learning images. The recognition is then
proposed by computing distance between by the L largest
eigenvalues of candidate image and reference images. In
these contributions, it may be noticed that an Inverse Per-
spective Mapping (IPM)˜[10], [1] is systematically applied
to the original images beforehand, unlike the following two
papers˜: a model fitting algorithm is performed on graylevel
perspectives images to compare candidate contours with
prototypes objects, encoded as arc splines˜[9]. In [3], the
authors propose to recognize road marking in intersection by
a 3-step algorithm˜: segmentation with gaussian mixture, 3D
reconstruction and classification by thresholding six features.
In summary, each previously cited work focuses on a single
class of specific road marking while the challenge is the
detection and the recognition of the diverse classes of road
markings.

III. ROAD MARKING RECOGNITION

The road marking recognition system we propose consists
of two steps: extraction of marking elements and identifi-
cation of resulting connected components as crosswalks or
directional arrows.

A. Marking Element Extraction

Fig.˜1.˜˜ 1st line: original image and median filtered image. 2nd line: original
image after local threshold TG = 20 using the filtered image and the
extraction result (extracted marking pixels are in blue).

The classification of the image pixels in two classes:
“marking” and “non-marking” was previously studied in
depth in [22], [17]. In [22], we started from an ex-
perimental comparison between several road marking el-
ements extraction algorithms, on a set of 116 ground-
truth images named the ROMA database (available at
www.lcpc.fr/en/produits/ride/). The ground-truth database is
made of images taken from a vehicle along with a hand-
made segmentation of the marking pixels in each image.

This database was extended with more than one hundred
extra images taken in various weather and visibility condi-
tions (also available at www.lcpc.fr/en/produits/ride/ under
the name ROMA2). The ROMA and ROMA2 databases
contain mainly regular lane markings and only a few spe-
cific markings. As a consequence, we built another ground-
truth database, named MiTowns, with high-resolution images
(of size 1920× 1080) taken in the urban area of Paris
where many specific markings can be observed. The three
databases, ROMA, ROMA2 and MiTowns were used in˜[17]
to compare several extraction algorithms, for both lane
markings and specific road markings extraction. We then
proposed several improvements, for instance to take into
account the fact that specific markings are most often wider
than lane markings. At the time of the publication of˜[17],
the MiTowns database was made of 47 images, and now it
contains 80 images1.

In summary, the best extraction algorithm we found˜[17]
processes the image line-by-line independently, seeking for
segments of marking pixels. In the processing, the horizontal
sizes are modulated for each line to take into account the
perspective effect the road is subject to when observed by a
frontal camera. The basis idea of the algorithm relies on the
fact that the intensity of a marking pixel is higher than the
intensity of pavement pixels belonging to its neighborhood.
The three steps are illustrated in Fig.˜1. The first step of the
extraction algorithm consists in filtering the original image
to remove all the white objects with an horizontal size lower
than the maximum horizontal size of markings. The second
step is a local thresholding that classifies as “marking” every
pixel in the original image with a value higher than the
value of the corresponding pixel in the filtered image plus a
threshold TG. Other pixels are classified as “non-marking”.
The result of the second step is hence a binary image. Last,
the third step consists in removing the horizontal segments
of marking that are too small to be considered as marking
elements.

Several different filters might be used in the first step.
Taking a median filter leads to the so-called Median Local
Threshold (MLT) algorithm˜[4], [12]. However, we found
that the best results [17] are obtained by using the value of
the 43rd percentile, instead of the 50th as in the median. The
algorithm is thus called the 43rd Percentile Local Threshold
(43rd PLT) extraction algorithm.

The ROC curves established on the 80 images of the
MiTowns database is shown in Fig.˜2. This figure confirms
that the 43rd PLT extraction algorithm performs better than
the MLT extraction algorithm, as first shown in˜[17]. It must
be underlined that after optimization, the complexity of the
43rd PLT extraction algorithm is a linear function of the
number of pixels in the image and does not depend on the
size of the filter.

When the input image is in RGB, it was proposed in [22]
to process independently each color channel and then to fuse
the three resulting binary images using a min operator. We

1Soon available at www.lcpc.fr/en/produits/ride/



Fig.˜2.˜˜ ROC curve obtained using Median Local Threshold extraction
algorithm on the color image (MLT), using the 43rd percentile Local
Threshold extraction algorithm on the color image (43rd PLT) and using
the 43rd PLT on the min over the color components (43rd PLT+minRGB).

found that it is better to merge the color channels before
extracting road marking elements, by taking the minimum
over the three color components. This divides the processing
time by a factor of three. For instance, the average processing
time on a dual-core processor 2.4 GHz, for an image of size
1920× 1080, is 100ms. Moreover, as shown by the ROC
curve in Fig.˜2, the use of the minimum over the color
components leads to better results. This relatively important
improvement can be explained by a better robustness to road
specular highlights. In Fig.˜3, road specular highlights can
be seen between the zebra strips, which result in a loss of
contrast between road and zebra in several color channels.
Therefore, the zebra is badly extracted using the MLT and
43rd PLT extraction algorithms on the original color image
as illustrated by the second and third images of Fig.˜3.
The fourth image shows the minimum over the three color
components, where we can notice how the contrast between
the road and the zebra is improved. The 43rd PLT extraction
algorithm is thus able to better segment the zebra strips as
illustrated in the last image of Fig.˜3.

B. Identification

The identification step consists in detecting objects as
connected components and then in analyzing their shape.
The recognition algorithm is applied after inverse perspec-
tive mapping (IPM) to avoid perspective deformations and
scale changes˜[10], [1] (see Fig.˜4). In the IPM image, the
connected components are first selected according to several
geometric parameters to reduce the number of candidates:

• the dimensions of the major axis L and the minor axis l
of the connected components must lie within the ranges
[σL

min,σ
L
max] and [σ l

min,σ
l
max] . The thresholds are fixed

from theoretical values given by regulatory norms.
• the rectangularity criterion is defined as (Lmean ×

lmean)/(Lmax× lmax) where Lmean and lmean are the mean

Fig.˜3.˜˜ From top to bottom: original color image; extraction results of the
MLT algorithm and of the 43rd PLT algorithm on the color image; min over
the color components of the original image; extraction results of the 43rd

PLT algorithm on the min image. Red: False Positives, blue: True Positives,
white: False Positive. The same threshold value is used (TG = 20). Notice
how the contrast is improved between road and zebra in the fourth image.

dimensions of the connected component in the direction
of major and minor axis, and Lmax and lmax are the
maximum dimensions in the direction of major and
minor axis (see fig.˜5).

The threshold values of the geometric filtering step are
gathered in Tab.˜I. The recognition of crosswalks and arrows
are then processed independently. Indeed, crosswalks belong
to the class of markings with repetitive patterns and arrows



Fig.˜4.˜˜ original image (top) ; road marking extraction (middle) ; Inverse
perspective mapping (bottom).
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Fig.˜5.˜˜ Rectangularity criterion used during the geometric filtering of the
connected components.

TABLE˜I
THRESHOLD VALUES USED THE THE GEOMETRIC FILTERING OF THE

CONNECTED COMPONENTS.

Crosswalks Arrows
σL

min (in pixels) 135 80
σL

max (in pixels) 405 320
σ l

min (in pixels) 20 30
σ l

max (in pixels) 60 -
Rectangularity upper than 0.7 lower than 0.7

are markings with a single pattern.

1) Crosswalks recognition: The crosswalks recognition is
performed by considering the location of connected compo-
nents related to each other. Two connected components, at
least, belong to the same crosswalk if their orientations α are
similar and if their centroids are located on the same minor
axis and are separated by a maximum distance 9× lmean. This
value is voluntary fairly high to take into account partial
occlusions of the object of interest. These partial occlusions
are most often due to masking by a vehicle. An exemple of
this situation is presented in Fig.˜6-1st row.

2) Arrows recognition: The arrows recognition is per-
formed by comparing extracted connected components to the
5 different types of directional arrows. Actually, several in-
stances of a same arrow with partial occlusion perturbations
are considered and 63 models of arrows are represented in
the model data set. The candidate image, that corresponds
to the bounding box of resulting connected component and
the model image are normalized to the size 120×120. The
models have been learned with their rotated position within
−15◦ et +15◦ related to major axis in the image plane.
The similarity criterion firstly considers the binary Ham-
ming distance between the model image and the candidate
image. If the Euclidean distance is lower than a threshold
σh, the connected component is recognized with the type
of closest model. Otherwise, a second similarity criterion
is computed between the histograms of the closest model
and the histograms of the candidate. The two projection
histograms are defined by the sum of object pixels along
major axis L and minor axis l. Note that the histograms
can be computed by the discrete Radon transform for the
angles α and α +π/2. The similarity is then computed as
the intersection between the histogram of the model and the
histogram of the candidate. The identification is confirmed
if the similarity values are upper than σL for major axis and
σl for minor axis. At the moment, the values σh, σL, σl have
been chosen experimentally on a few examples.

IV. EVALUATION DATA SET

The ground-truth database contains 280 images of size
1920×1080 of road scenes in urban environment for a total
amount of 165 crosswalks and 151 arrows. The crosswalks
are of variable sizes and seen at different distances. The five
types of arrows appear in the database and the arrows are
seen at various distances. An image may contain none or
several objects of interest. The reference is a hand made set
of bounding boxes around every crosswalk and arrow. Every
bounding box is labeled as crosswalk or arrow.

A. Evaluation metrics

A detection is a bounding box in the images. A reference
bounding box is considered as correctly detected when it
exists a detection bounding box close enough with the correct
label (crosswalks or arrow). We denote (xr,yr) the center of
the reference bounding box, (wr,hr) its width and height
and αr its orientation. The same notations with subscript
d are used for the detected bounding box. A candidate is
considered as true positive (TP) if˜:



• the distance between (xr,yr) and (xd ,yd) is lower or
equal to 0.3max(wr,hr),

• the height hd is lower or equal to 0.45hr,
• the absolute difference of orientation |αd−αr| is lower

or equal to 20 degrees.
Given a reference bounding box, if the previous conditions
are not verified for any detection bounding box, it is a
false negative (FN). Given a detection bounding box, if the
previous rule is not verified for any reference bounding box,
it is a false positive (FP). Usually, in the receiver operating
characteristic (ROC) curve, the true positive rate (TPR) is
plotted versus the false positive rate (FPR). The true positive
rate is defined as T PR = T P

T P+FN . The false positive rate
is defined as FPR = FP

FP+T N . The difficulty in computing
FPR is to estimate the number of true negative TN which
is very large and thus which artificially bias towards zero
the FPR. Rather than using the false positive rate, it is more
meaningful to use the false positive rate per image (FPPI)
which is defined as the ratio of FP over the number of images
in the database.

V. EXPERIMENTAL RESULTS

The first experiment focuses on the optimal value of the
threshold TG. Indeed, the efficiency of the extraction algo-
rithm has a strong impact on the performances of the whole
system. The value of TG which maximizes the true positive
rate is chosen as optimal. On a sub-database containing 94
images with 61 crosswalks and 46 arrows, the detection and
recognition algorithm is applied and the TPR is computed
for each integer value TG in the range [0,255]. The best
TPR is obtained for TG = 20 with 95% of true detection for
crosswalks (3 crosswalks are not detected) and 87% of true
detection for arrows (6 arrows are not detected). A careful
examination of the results shows that non-detected markings
are usually occluded by object of the complex environment
(see Fig.˜6-3rd row). Other non-detected markings are highly
erased or very dirty (see Fig.˜6-4th row). Nevertheless,
the algorithm is able to detect worn-out crosswalks and
arrows as shown in Fig.˜6-3rd and 5th rows, and is robust
to back-lights as illustrated in Fig.˜6-2nd row. It may be
noticed that only 6 false alarms have been detected in the
94 images (FPPI = 0.064). In the second experiment, the
algorithm is tested on the 186 remaining images in which
104 crosswalks and 105 directional arrows appear. The T PR
is 90% for crosswalks (10 non-detected makings) and 78%
for directional arrows (23 non-detected markings). Like in
the first experiment, the missed objects are damaged (erased
or dirty) or occluded markings. It is important to notice that
100% of detected arrows are correctly identified among the
five types of arrows. Concerning the false alarms rate, 3
crosswalks and 7 arrows have been wrongly detected and
identified in the 186 images. As a consequence, the false
positive rate per image is fairly low: FPPI = 0.053. It may
be pointed out that the T PR is always lower for arrows than
for crosswalks. A possible explanation is that crosswalks are
wider with repetitive patterns and thus the detection and
recognition algorithm is more robust to occlusion. Indeed,

Fig.˜6.˜˜ 1st col.: original images ; 2nd col.: marking recognition. Ground-
truth bounding boxes are in magenta and algorithm results are in blue.

while one or several patterns may be occluded, there is, in
general, enough non-occluded patterns for a correct detection
and recognition. The case of arrows detection is different
because it is a single pattern which can be directly affected by
occlusion and extraction errors. From the results we obtained,
it seems that the first way to increase the performances of
the algorithm may be to complete the model data set with
additional reference images by adding other perturbations
such as additive noise. A second way may be to improve
the marking extraction step by introducing, for instance,
edge information. The figure˜7 shows an example of marking
extraction using both 43rd PLT method and edge detection.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we have proposed an algorithm for detecting
and identifying crosswalks and arrows in urban images. We
have tested this algorithm on a data base containing real-
world, high-resolution images with a non-negligible amount



Fig.˜7.˜˜ From top to bottom : original image ; road marking extraction
using 43rd PLT ; road marking extraction using 43rd PLT (in gray level)
and edge information (in yellow).

of difficult cases. The results show that 90% of crosswalks
and 78% of arrows have been detected. We believe that the
method proposed in this paper may be adapted to identify
more generic markings such as zebras, words or pictograms.
At short-term, we should investigate the extension of the set
of models, the use of edge informations in the extraction
step and the combination of two extractions as presented
in˜[14]. At mid-term, other investigations should be leaded
to optimize the recognition algorithm. More specifically, the
number of thresholds involved should be reduced and the
remaining ones should be set by a systematical analysis on a
training database. These improvements should be confirmed
by further evaluations on a larger test database and will
hopefully increase the true detection rate.
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