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Abstract—One source of accidents when driving a vehicle
is the presence of fog. Fog fades the colors and reduces the
contrasts in the scene with respect to their distances from
the driver. Various camera-based Advanced Driver Assistance
Systems (ADAS) can be improved if efficient algorithms are
designed for visibility enhancement in road images. The visibility
enhancement algorithm proposed in [1] is not optimized for road
images. In this paper, we reformulate the problem as the inference
of the local atmospheric veil from constraints. The algorithm
in [1] thus becomes a particular case. From this new derivation,
we propose to better handle road images by introducing an extra
constraint taking into account that a large part of the image can
be assumed to be a planar road. The advantages of the proposed
local algorithm are the speed, the possibility to handle both color
and gray-level images, and the small number of parameters.
A new scheme is proposed for rating visibility enhancement
algorithms based on the addition of several types of generated
fog on synthetic and camera images. A comparative study and
quantitative evaluation with other state-of-the-art algorithms
is thus proposed. This evaluation demonstrates that the new
algorithm produces better results with homogeneous fog and that
it is able to deal better with the presence of heterogeneous fog.
Finally, we also propose a model allowing to evaluate the potential
safety benefit of an ADAS based on the display of defogged
images.

I. INTRODUCTION

A cause of vehicle accidents is reduced visibility due to

bad weather conditions such as fog. This suggests that an

algorithm able to improve visibility and contrast in foggy

images will be useful for various camera-based Advanced

Driver Assistance Systems (ADAS). In [2], it is shown for

several types of detection algorithms, that a visibility enhance-

ment pre-processing allows to improve detection performance

in presence of fog. This is due to a better respect after

pre-processing of the assumption that objects to be detected

have a minimal contrast which is set to be uniform over

the whole image. Two kinds of ADAS can be considered.

The first possibility is to display the image from a frontal

camera after visibility enhancement. We call this kind of

ADAS a Fog Vision Enhancement System (FVES). The second

possibility is to combine visibility enhancement pre-processing
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with detection of stopped cars/moving cars/pedestrians/two-

wheeled vehicles, to deliver adequate warning. An example is

a warning when the distance to the previous moving vehicle

is too short with respect to the driver’s speed.

For ADAS based on the use of a single camera in the

vehicle, the contrast enhancement algorithm must be able to

robustly process each image in a sequence in real time. The

key problem is that, from a single foggy image, contrast

enhancement is an ill-posed problem. Indeed, due to the

physics of fog, visibility restoration requires to estimate both

the scene luminance without fog and the scene depth-map.

This implies estimating two unknown parameters per pixel

from a single image.

The first approach proposed to tackle the visibility restora-

tion problem from a single image is described in [3]. The

main idea is to provide interactively an approximate depth-

map of the scene geometry allowing to deduce an approximate

luminance map without fog. The drawback of this approach

for camera-based ADAS is clear: it is not easy to provide

the approximate depth-map of the scene geometry from the

point of view of the driver all along its road path. In [4],

this idea of approximate depth-map was refined by proposing

several simple parametric geometric models dedicated to road

scenes seen in front of a vehicle. For each type of model,

the parameters are fit on each view by maximizing the scene

depths globally without producing black pixels in the enhanced

image. The limit of this approach is the lack of flexibility of

the proposed geometric models.

During the same period of time, another approach was

proposed in [5] based on the use of color images with

pixels having a hue different from gray. A difficulty with this

approach, for the applications we focus on, is that a large part

of the image corresponds to the road which is gray and white.

Moreover, in many intelligent vehicle applications, only gray-

level images are processed.

More recently and for the first time in [1], [6], [7], three vis-

ibility enhancement algorithms were proposed working from a

single gray-level or color image without using any other extra

source of information. These three algorithms rely on a local

spatial regularization to solve the problem. Being local, these

algorithms can cope with homogeneous and heterogeneous

fog. The main drawback of the algorithms in [6] and [7] is

their processing time: 5 to 7 minutes and 10 to 20 seconds

on a 600× 400 image, respectively. The algorithm proposed

in [1] is much faster with a processing time of 0.2 second on a

Dual-Core PC on similar image size. A fast variant of [7] was

very recently proposed in [8]. The disadvantage of these three



visibility enhancement methods, and of the other variants or

improved algorithms more recently proposed, is that they are

not dedicated to road images and thus the road part of the

image which is gray may be over-enhanced. This is due to the

ambiguity between light colored objects and the presence of

fog, and leads to the apparition of unwelcome structures in the

enhanced image, as it is illustrated on three images in Fig. 2.

The important property of a road image is that a large part of

the image corresponds to the road way which can reasonably

be assumed to be planar. Visibility enhancement dedicated to

planar surface was first proposed in [9], but this algorithm is

not able to correctly enhance visibility of objects out of the

road plane. Recently, a visibility enhancement algorithm [2]

dedicated to road images was proposed which was also able

to enhance contrast for objects out of the road plane. This

algorithm makes good use of the planar road assumption but

relies on an homogeneous fog assumption.

In this work, we formulate the restoration problem as the

inference of the atmospheric veil from to three constraints.

The first constraint relies on photometrical properties of the

foggy scene. The second constraint, named the no-black-pixel

constraint, was not used in [6], [7] and [1]. It involves filtering

the image. The algorithm described in [1] corresponds to

the particular case where two constraints are used with the

median filter. To take into account that a large part of the

image is a planar road, as introduced first in [2], a third

constraint based on the planar road assumption is added. The

new algorithm can thus be seen as the extension of the local

visibility enhancement algorithm [1] combined with the road-

specific enhancement algorithm [9]. The proposed algorithm

is suitable for FVES since it is able to process gray-level as

well as color images and runs close to real time.

To compare the proposed algorithm to previously presented

algorithms, we propose an evaluation scheme and we build up

a set of synthetic and camera images with and without homo-

geneous and heterogeneous fog. The algorithms are applied

on foggy images and results are compared with the images

without fog. For FVES in which the image after visibility

enhancement is displayed to the driver, we also propose an

accident scenario and a model of the probability of fatal injury

as a function of the setting of the visibility enhancement

algorithm.

The article is structured as follows. Section II presents

the fog model we use. In section III, the multiscale retinex

algorithm (MSR) [10] and the contrast-limited adaptive his-

togram equalization (CLAHE) are summarized. In section IV,

different approaches of visibility enhancement are described:

based on the planar assumption (PA) [9], on a free-space

segmentation (FSS) [2], on our new derivation using the

no-black-pixel constraint (NBPC) [1], on Dark Chanel Prior

(DCP) [7], and finally the new combined algorithm named

NBPC+PA is proposed. In section V, a comparison is provided

between MSR, CLAHE, DCP, FSS, NBPC and NBPC+PA

algorithms based on a quantitative evaluation on two sets of

66×4 and 10×4 foggy images, illustrating the properties of

each algorithm. Finally, in section VI an accident scenario is

proposed with a model allowing to estimate potential safety

benefits of FVES.

Fig. 1. Contrast fading on the same scene due to various values of the
extinction coefficient k.

II. EFFECTS OF FOG

Assuming an object of intrinsic luminance L0(u,v), its

apparent luminance L(u,v) in presence of a fog of extinction

coefficient k is modeled by Koschmieder’s law [11]:

L(u,v) = L0(u,v)e
−kd(u,v)+Ls(1− e−kd(u,v)) (1)

where d(u,v) is the distance of the object at pixel (u,v) and

Ls is the luminance of the sky. As described by (1), fog has

two effects: first an exponential decay e−kd(u,v) of the intrinsic

luminance L0(u,v), and second the addition of the luminance

of the atmospheric veil Ls(1−e−kd(u,v)) which is an increasing

function of the object distance d(u,v). These two effects can be
seen on the same scene in Fig. 1 for different values of k. The

meteorological visibility distance is defined as dm =−
ln(0.05)

k
,

see [11].

From now on, we assume that the camera response is linear,

and thus image intensity I is substituted to luminance L.

III. COLOR AND CONTRAST ENHANCEMENT

We now recall the Multiscale Retinex (MSR) and Contrast-

limited adaptive histogram equalization (CLAHE) algorithms.

These two algorithms are not based on Koschmieder’s law (1)

and thus are only able to remove a fog of constant thickness

on an image. They are not visibility enhancement algorithms.

However, we found it interesting to include these two algo-

rithms in our comparison in order to verify that visibility

enhancement algorithms achieve better results.

A. Multiscale Retinex (MSR)

The multiscale retinex (MSR) is a non-linear image en-

hancement algorithm proposed by [10]. The overall impact

is to brighten up areas of poor contrast/brightness but not at

the expense of saturating areas of good contrast/brightness.

The MSR output is simply the weighted sum of the outputs

of several single scale retinex (SSR) at different scales.

Each color component being processed independently, the

basic form of the SSR for on input image I(u,v) is:

Rk(u,v) = log I(u,v)− log[Fk(u,v)∗ I(u,v)] (2)

where Rk(u,v) is the SSR output, Fk represents the k
th surround

function, and ∗ is the convolution operator. The surround



functions, Fk are given as normalized Gaussians:

Fk(u,v) = κke
−(u2+v2)/σ2

k (3)

where σk is the scale controlling the extent of the surround

and κk is for unit normalization. Finally the MSR output is:

R(u,v) =
k=K

∑
k=1

WkRk(u,v) (4)

where Wk is the weight associated to Fk.

The number of scales used for the MSR is, of course,

application dependent. We have tested different sets of param-

eters, and we did not find a better parametrization than the

one proposed by [10]. It consists of three scales representing

narrow, medium, and wide surrounds that are sufficient to

provide both dynamic range compression and tonal rendition:

K = 3, σ1 = 15 , σ2 = 80, σ3 = 250, and Wk = 1/3 for

k = 1,2,3.
Results obtained using the multiple retinex on three foggy

images are presented in column two of Fig. 2.

B. Contrast-Limited Adaptive Histogram Equalization

(CLAHE)

Contrast-limited adaptive histogram equalization (CLAHE)

locally enhances the image contrast. As proposed in [12],

CLAHE operates on 8× 8 regions in the image, called tiles,

rather than the entire image. Each tile’s contrast is enhanced,

so that the histogram of the output region approximately

matches a flat histogram. The neighboring tiles are then

combined using bilinear interpolation to eliminate artificially

induced boundaries. The enhanced contrast, especially in

homogeneous areas, is limited to avoid amplifying noise or

unwelcome structures, such as object textures, that might be

present in the image. The parameter controlling this limitation

was optimized on 40 images, varying both the scene and the

fog properties.

Results obtained using the CLAHE algorithm are presented

in column three of Fig. 2.

IV. ENHANCEMENT BASED ON KOSCHMIEDER’S LAW

Four visibility enhancement algorithms are now presented:

enhancement assuming a planar scene assumption (PA), en-

hancement with free-space segmentation (FSS), enhancement

with the no-black-pixel constraint (NBPC) and enhancement

with the dark channel prior (DCP). The advantages and limits

of these algorithms are discussed. A new algorithm, named

NBPC+PA, which combines the advantages of PA and NBPC

algorithms, is proposed. The results obtained by the five

algorithms are presented in Fig. 2 on three images.

A. With the planar assumption (PA)

Dedicated to in-vehicle applications, the algorithm proposed

in [13], [11] is able to detect the presence of fog and to

estimate the visibility distance which is directly related to the

k in Koschmieder’s law (1). This algorithm, also known as the

inflection point algorithm, mainly relies on three assumptions:

fog is homogeneous, the main part of the image displays the

road surface which is assumed to be planar and homogeneous

surface. From the estimated fog parameters, the contrast in the

road part of the image can be restored as explained in [9].

Using the planar road surface assumption and knowing the

approximate camera calibration with respect to the road, it is

possible to associate a distance d with each line v of the image:

d =
λ

v− vh
if v> vh (5)

where vh is the vertical position of the horizon line in the

image and λ depends on intrinsic and extrinsic parameters of

the camera, see [11] for details.

Using the assumption of a road with homogeneous photo-

metric properties (I0 is constant), fog can be detected and the

extinction coefficient of the atmosphere k can be estimated

using Koschmieder’s law (1). After substitution of d given

by (5), (1) becomes:

I(v) = I0e
−k λ

v−vh + Is(1− e
−k λ

v−vh ) (6)

By taking twice the derivative of I with respect to v, the

following is obtained:

d2I

dv2
(v) = k

λ (I0− Is)

(v− vh)3
e
−k λ

v−vh

(

kλ

v− vh
−2

)

(7)

The equation d2I
dv2

= 0 has two solutions. The solution k= 0 is

of no interest. The only useful solution is given by k= 2(vi−vh)
λ ,

where vi denotes the position of the inflection point of I(v).
An illustration of this method is presented in Figure 3(b). The

value of Is is obtained as the intensity of the sky. Most of the

time, it corresponds to the maximum intensity in the image.

Having estimated the value of k and Is, the pixels on the road

plane can be restored as R(u,v) by reversing Koschmieder’s

law [9]:

R(u,v) = I(u,v)e
k λ
v−vh + Is(1− e

k λ
v−vh ) (8)

As in [4], the introduction of a clipping plane in equation (5)

allows to apply the reverse of Koschmieder’s law in the whole

image. More precisely, the used geometrical model consists in

the road plane (5) in the bottom part of the image, and in a

vertical plane in front of the camera in the top part of the

image. The height of the line which separates the road model

and the clipping plane is denoted c. As a consequence only

large distances are clipped. In summary, the geometrical model

dc(u,v) of a pixel at position (u,v) is expressed as:

dc(u,v) =















λ

(v− vh)
if v> c

λ

(c− vh)
if v≤ c

(9)

Results obtained with the previous model where the clipping

plane is set at the meteorological visibility distance dm are

shown on three foggy images in column four of Fig. 2. From

these results, it appears that only the road part of the image

is correctly restored.



original MSR CLAHE PA DCP FFS NBPC NBPC+PA

Fig. 2. From left to right, the original image with fog, the images enhanced using algorithms: multiscale retinex (MSR), contrast-limited adaptive histogram
equalization (CLAHE), planar assumption with clipping (PA), dark channel prior (DCP), free-space segmentation (FFS), no-black-pixel constraint (NBPC)
and no-black-pixel constraint combined with planar assumption (NBPC+PA).

Fig. 3. From left to right, steps of visibility enhancement with the FSS algorithm: original image, fog detection using the vertical inflection point, segmentation
of vertical objects (in red) and free-space region (in green), rough estimate of the scene depthmap, obtained visibility enhancement.

B. With free-space segmentation (FSS)

To be able to enhance the visibility in the rest of the scene,

an estimate of the depth d(u,v) of each pixel is needed. In [4],

a parameterized 3D model of the road scene was proposed

with a reduced number of geometric parameters. Even if these

models are relevant for most road scenes and even if the

parameters of the selected model are optimized to achieve best

enhancement without black pixel in the resulting image, the

proposed model is not generic enough to handle all traffic

configurations.

In [2], a different scheme is proposed. Once again, the road

is assumed to be planar with a clipping plane, see (9). When

a geometric model (9) is assumed, the contrast of objects

belonging to the road plane is correctly restored, as seen in

previous section. Conversely, the contrast of vertical objects of

the scene (vehicles, trees,...) is incorrectly restored since their

depth in the scene is largely overestimated. Consequently, their

restored intensity using (8) are negative and thus set to zero

in the enhanced image. These are named black pixels. The set

of all black pixels gives a segmentation of the image in two

regions, one inside the road plane in 3D and the other outside.

This allows to deduce the free-space region, as illustrated in

green and red in Fig. 3, see [14] for details.

For each pixel in the free-space region, the road plane

model (5) is correct. For pixels out of the road plane (red

region in third image of Fig. 3), it is proposed in [2] to use

the geometric model (9) and, for each pixel, to search for the

smallest value of c which leads to a positive intensity in the

restored image. The obtained values are denoted cmin(u,v).
Indeed, when c is close to the vh, the clipping plane is far

from the camera and the visibility is only slightly enhanced.

The larger the value of c, the closer the clipping plane is

to the camera, and thus the stronger the enhancement. The

enhancement in (8) can be so strong that enhanced intensity

becomes negative.

Every cmin(u,v) value can be associated with a distance

dmin(u,v) using (9). The resulting depthmap on the foggy

image is displayed in Fig. 3. Then, a rough estimate of

the depthmap d(u,v) is obtained as a fixed percentage p of

depth map dmin(u,v). Percentage p specifies the strength of

the enhancement and is usually set to 95% for this method.

The depthmap is used to enhance the contrast on the whole

image using the reversed Koschmieder’s law as illustrated in

the fourth image of Fig. 3. The algorithm is detailed in [2],

[14] and more results are shown in the sixth column of Fig. 2.

C. With no-black-pixel constraint (NBPC)

In [1], an algorithm which relies on a local regularization is

proposed. The distance d(u,v) being unknown, the goal of the

visibility enhancement in a single image can be set as inferring

the intensity of the atmospheric veil V (u,v) = Is(1−e−kd(u,v)).
Most of the time, the intensity of the sky Is corresponds to the

maximum intensity in the image, and thus Is can be set to

one without loss of generality, assuming the input image is

normalized. After substitution of V in (1) and with Is = 1,

Koschmieder’s law is rewritten as:

I(u,v) = I0(u,v)(1−V (u,v))+V (u,v) (10)

The foggy image I(u,v) is enhanced as R, the estimate of

I0, simply by the reversing of (10):

R(u,v) =
I(u,v)−V (u,v)

1−V (u,v)
(11)



The enhancement equation provided by Koschmieder’s law

is a linear transformation. Interestingly, it gives the exact link

between its intercept and its slope.

The atmospheric veil V (u,v) being unknown, let us enu-

merate the constraints which apply to V (u,v). V (u,v) must be

higher or equal to zero and V (u,v) is lower than I(u,v):

0≤V (u,v)≤ I(u,v) (12)

These are the photometric constraints as named in [6].

We now introduce a new constraint, not used in [1], which

focuses on the reduction of the number of black pixels in the

enhanced image R. This constraint is named no-black-pixel

constraint and states that the local standard deviation of the

enhanced pixels around a given pixel position must be lower

than its local average:

f std(R)≤ R̄ (13)

where f is a factor usually set to 1. In case of a Gaussian

distribution of the intensities and f = 1, this criterion implies

15.8% of the intensities becoming black. Using f = 2 leads to

a stronger criterion where only 2.2% of the intensities become

black.

The difficulty with this last constraint is that it is set as

a function of the unknown result R. Thanks to the linearity

of (11), the no-black-pixel constraint can be turned into a

constraint involving V and I only. For this purpose, we now

enforce local spatial regularization by assuming that locally

around pixel position (u,v), the scene depth is constant and

the fog is homogeneous, i.e equivalently, the atmospheric

veil locally equals V (u,v) at the central position. Under this

assumption, we derive using (11) that the local averages Ī

and R̄ are related by R̄ = Ī−V (u,v)
1−V (u,v) and that the standard

deviations std(I) and std(R) are related by std(R) = std(I)
1−V (u,v) .

We therefore obtain, after substitution of the two previous

results in (13), the no-black-pixel constraint rewritten as a

function of V (u,v) and I:

V (u,v)≤ Ī− f std(I) (14)

The atmospheric veil V (u,v) is set as a percentage p of the

minimum over the two previous upper bounds (12) and (14):

V (u,v) = p min(I(u,v), Ī− f std(I)) (15)

Percentage p specifies the strength of the enhancement and

is usually set to 95% for this method. The enhanced image

is obtained by applying (11) using the previous V . V may be

thresholded to zero in case of negative values. The algorithm

derived from the photometric and no-black-pixel constraints

turns out to be the one described in [1] where Ī is obtained as

the median of the local intensities in a window of size sv and

the standard deviation as the median of the absolute differences

between the intensities and Ī using same window size. Other

edge-preserving filters can be also used, such as the median

of median along lines [1] or bilateral filtering. Due to edge

smoothing of complex borders, small artifacts are produced

in the restored image around complex depth discontinuities

such as tree silhouettes. A post-processing with the cross/joint

bilateral filter on V using I as a guide can be used to clean

these artifacts as proposed in [15].

This enhancement algorithm is presented with a gray-level

input image but can be extended easily to color images

(r(u,v),g(u,v),b(u,v)) by applying the photometric constraint

to substitute I in the previous equation by the gray-level im-

age I(u,v) = min(r(u,v),g(u,v),b(u,v)) after adequate white

balance. The obtained V gives the amount of white that must

be subtracted to the three color channels. The algorithm is

available1 in MatlabTM .

Fig. 2 shows the visibility enhancement obtained by the

NBPC algorithm in the seventh column. One can notice that

the contrast on the texture of the road part of the resulting

image is over-enhanced. This is due to the fact that the

atmospheric veil V (u,v) in the road part of the image is over-

estimated. This is a consequence of the locality property of the

NBPC algorithm. As detailed in [1], a final gamma mapping

can be used to attenuate this problem.

D. Dark Channel Prior (DCP)

An algorithm for local visibility enhancement named Dark

Channel Prior was proposed in [7]. For gray level images,

the DCP algorithm consists first in applying a morphological

erosion or opening with a structuring element of size sv, which

removes all white objects with a size smaller than sv. Then, the

atmospheric veil V (u,v) is set as a percentage p of the opening

result. This first step can thus be seen as a particular case of the

NBPC algorithm using a morphological operator as filter and

with f = 0. Similarly to what was explained in the previous

section, an erosion or an opening does not preserve accurate

complex borders along depth discontinuities. In [7], a matting

algorithm is used to restore complex borders in V . A faster

alternative consists in using iterations of the guided-filter,

as proposed in [8]. The cross/joint bilateral filter is another

alternative. The implementation used in our experiments is

based on the guided filter. The enhanced image is obtained

by applying the inverse of Koschmieder’s law (11) using the

previous V . Fig. 2 shows the visibility enhancement obtained

by the DCP algorithm in the fifth column. A final fixed gamma

mapping is used to attenuate the darkening of the road region.

As in the NBPC algorithm, color images are handled by

using I(u,v) = min(r(u,v),g(u,v),b(u,v)) as the input gray-

level image.

E. Combining the no-black-pixel constraint and the planar

assumption (NBPC+PA)

On the one hand, the visibility enhancement with FSS, as

explained in section IV-B, performs a segmentation to split

the image into three regions: the sky, the objects out of the

road plane, and the free-space in the road plane. Various en-

hancement processes are performed depending on the region.

The difficulty with an approach based on segmentation is

to manage correctly the transition between regions. On the

other hand, the visibility enhancement with NBPC and DCP

are local methods which are not dedicated to road images

1perso.lcpc.fr/tarel.jean-philippe/visibility/



and which are in difficulties in presence of a large uniform

gray region such as a road, as underlined in [16]. Indeed,

the atmospheric veil in the bottom part of the image is over-

estimated.

To combine the advantages of the two approaches, we

introduce in the NBPC a third constraint, during the inference

of the atmospheric veil V (u,v), which prevents over-estimation

in the bottom part of the image by taking into account the

reduced distance between the camera and the road.

In practice, it is very rare to observe fog with a meteoro-

logical visibility distance dm lower than 60m. Assuming that

the minimum meteorological visibility distance is sixty meters,

i.e dm ≥ 60, we deduce k≤−
ln(0.05)

60
. We also assume that the

road is a plane up to a certain distance, and that the camera

calibration is known with respect to the road, so that λ and

vh are known. Thus, using the last term of equation (6), the

atmospheric veil is subject to the following third constraint :

V (u,v)≤ Is(1− e
ln(0.05)λ

dmin(v−vh) ) (16)

where dmin can be set for instance to the minimum distance

60m. We named (16) the planar assumption constraint. As in

the NBPC algorithm, the atmospheric veil V (u,v) is set to a

percentage p of the minimum over the three upper bounds:

V (u,v) = p min(I(u,v), Ī− f std(I), Is(1− e
ln(0.05)λ

dmin(v−vh) )) (17)

The enhanced image results of the application of (11). We

named it visibility enhancement with NBPC+PA.

In the presence of fog with a meteorological visibility

distance lower than dmin = 60m, this third constraint limits

the possibilities of enhancement which will be partial at short

distances even with p = 100%. An interesting consequence

of introducing the third constraint is that the final gamma

mapping used in NBPC and DCP algorithms is no longer

needed to attenuate the image darkening, as illustrated in the

eighth column of Fig. 2.

Rather than fixing dmin = 60m, an alternate approach, not

tested here, would be to run a fog detection algorithm with

the k estimation as explained in section IV-A and to use the

estimated k in (16) instead of −
ln(0.05)

60
. This estimation of k as-

sumes an homogeneous fog. Therefore, this refinement should

lead to more accurate results compared to the NBPC+PA when

the fog is uniform, but may lead to a bias when the fog is not

homogeneous.

V. EXPERIMENTS

To evaluate visibility enhancement algorithms, we need

images of the same scene with and without fog. However,

obtaining such pairs of images is extremely difficult in practice

since it requires to check that the illumination conditions

are the same into the scene with and without fog. As a

consequence, for the evaluation of the proposed visibility

enhancement algorithm and its comparison with existing al-

gorithms, we build up two sets of images without fog and

with synthetic fog, from 66 synthetic and 10 camera scenes.

A. Synthetic fog

We generated 66 synthetic images using the SiVICTM

software which allows to build physically-based road envi-

ronments, to generate a moving vehicle with a physically-

driven model of dynamic behavior [17], and virtual embedded

sensors. From three realistic and complex models (urban,

highway and mounts), we produced images from a virtual

camera inboard a simulated vehicle moving on a road path. We

have computed 66 images without fog from various viewpoints

trying to sample as many scene aspects as possible. Each

image is of size 640× 480. A subset of 4 images is shown

in the first column of Fig. 4. For each point of view, the true

depthmap is also computed, as shown in the second column

of Fig. 4. Indeed, the depthmap is required to add fog in the

images.

Synthetic images were computed from the image database,

using 4 different types of fog:

• Uniform fog: Koschmieder’s law (1) is applied with a

meteorological visibility distance of 80m.

• Heterogeneous k fog: as fog is not always homogeneous,

we introduced a variability in Koschmieder’s law by

weighting k differently with respect to the pixel position.

These spatial weights are obtained by means of a Perlin’s

noise between 0 and 1, i.e a noise spatially correlated

at different scales (2,4,8, up to the size of the image

in pixels) [18]. Perlin’s noise is obtained as a linear

combination over the spatially correlated noise generated

at different scales with weight log2(s)
2 for scale s. The

average meteorological visibility distance is set to 80m.

• Heterogeneous Ls fog: rather than having k heterogeneous

and Ls constant, we also tested the case where Ls is

heterogeneous thanks again to Perlin’s noise and where

k is constant. The meteorological visibility distance cor-

responding to k is 80m. This method produces fog with

a cloudy sky.

• Heterogeneous k and Ls fog: in order to challenge

the algorithms, we also generated a fog based on

Koschmieder’s law (1) where k and Ls are both hetero-

geneous thanks to two independent Perlin’s noises. The

average k is set to enforce a 80m visibility distance.

Finally the synthetic image database contains 4 sets of 66

foggy images, i.e a total of 264 foggy images, associated

with the 66 original images. Examples of foggy images are

displayed in the last four columns of Fig. 4. Notice the

differences in aspect between the different types of generated

fog. The set of 330 synthetic images and 66 depthmaps used

for the ground truth is available2 for research purpose and in

particular to allow other researchers to rate their own visibility

enhancement algorithms.

We applied the same process to add the 4 types of fog to

10 camera images. The 10 camera images were selected as

the left image of stereo sequences from Karlsruhe dataset3.

The point in using these images is that the disparity maps

obtained using the stereo reconstruction algorithm Libelas [19]

2www.lcpc.fr/english/products/image-databases/

article/frida-foggy-road-image-database
3http://www.rainsoft.de/software/datasets.html



Fig. 4. Synthetic road images database. First column is the original synthetic image. Second column is the depth map. Third to sixth columns are the original
image with different types of synthetic fog added, from left to right: uniform fog, heterogeneous k fog, heterogeneous Ls fog, and heterogeneous k and Ls
fog.

are also available from Karlsruhe dataset. These disparity maps

being of sufficient quality, we performed a cross/joint bilateral

filtering to fill in the remaining holes using the original

image as an interpolation guide [20]. The depthmaps are then

deduced from the disparity maps using the cameras calibration.

Finally the camera image database contains 4 sets of 10 foggy

images associated with the 10 original images, i.e a total of 40

foggy images. Examples of original and foggy images with a

uniform fog are displayed in the first two columns of Fig. 6.

B. Comparison on synthetic images

We apply each algorithm on the 4 types of fog. The tested

algorithms are: multiscale retinex (MSR), adaptive histogram

equalization (CLAHE), dark channel prior (DCP), enhance-

ment with free-space segmentation (FSS), enhancement with

no-black-pixel constraint (NBPC) and enhancement with no-

black-pixel constraint combined with planar scene assumption

(NBPC+PA). The results on 11 images with uniform and

hetereogeneous fog are presented in Figure 5. Notice the

contrast increase for the farther objects: some objects which

were barely visible in foggy image appear clearly in enhanced

images. A first visual analysis confirms that: first, MSR and

CLAHE are not suited for foggy images; second, far away

objects are more foggy after DCP than after NBPC+PA; third,

vertical objects appear too dark with FSS; fourth, the roadway

looks over-corrected by NBPC; fifth, NBPC+PA comes as a

nice trade-off.

The same quantitative comparison consists in computing the

absolute difference between the image without fog and the

image obtained after enhancement. The results, averaged over

the 66 images, the number of image pixels and the number of

image color components, are shown in Tab. I. In this average,

pixels in the sky, in the original image, are discarded not to

bias results. Indeed, the sky intensity cannot be restored as

constant white when Ls is heterogeneous. By computing the

average enhancement on the whole image, the proposed metric

is global and is not very sensitive to errors around edges.

We think that this metric is appropriate for intelligent vehicle

applications but it is probably not in other domains such as

computational photography.

In order to easily rate the improvement brought by the tested

algorithms, the average absolute difference between the foggy

image and the image without fog is also computed and shown

in row two of the table. One can notice that the proposed

algorithms are able, in the best case, to divide the average

difference by a factor slightly higher than two.

The multiscale retinex (MSR) is not a visibility enhance-

ment algorithm dedicated to scene with various object depths.

The average difference is decreased for the uniform fog and

for fog with heterogeneous Ls, compared to doing nothing.

Interestingly, when k is heterogeneous, the multiscale retinex

is worse than doing nothing. This is due to the fact that MSR

increases some contrasts corresponding to fog and not to the

scene.

Compared to doing nothing, the average difference is always

improved when using the adaptive histogram equalization.

Nevertheless, it is not a visibility enhancement algorithm

based on Koschmieder’s law (1) and thus the improvement

is small. As an illustration, CLAHE obtains worse results

than the multiscale retinex for uniform fog and for fog with

heterogeneous Ls.

The dark channel prior (DCP) and no-black-pixel constraint

(NBPC) algorithms achieve similar performance in average

on the whole database. Nevertheless, we notice that with the

NBPC algorithm the visibility improvement is slightly superior

at long range distances.
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Fig. 5. Visibility enhancement results on synthetic images. From left to right, the original synthetic image without fog, the image with fog, the images
enhanced using multiscale retinex, adaptive histogram equalization, dark channel prior, free-space segmentation, no-black-pixel constraint and no-black-pixel
constraint combined with planar scene assumption.

Algorithm Uniform Variable k Variable Ls Variable k&Ls All types

Nothing 81.6±12.3 78.7±12.3 69.0±10.9 66.4±10.8 73.9±13.2
MSR 46.7±16.3 86.4±24.7 44.8±17.1 83.7±24.9 65.4±28.9

CLAHE 66.9±10.7 64.5±9.7 54.5±8.5 54.6±7.8 60.1±10.9
DCP 46.3±15.6 46.9±17.0 43.7±16.2 44.1±17.5 45.2±16.7
FSS 34.9±15.1 40.9±13.5 32.5±11.4 36.5±10.3 36.3±13.1
NBPC 50.8±11.5 50.5±11.5 38.5±9.0 38.0±8.7 44.5±12.1

NBPC+PA 31.1±10.2 36.0±10.3 26.7±5.1 28.4±5.9 30.6±8.9

TABLE I
AVERAGE ABSOLUTE DIFFERENCE BETWEEN ENHANCED IMAGES AND TARGET IMAGES WITHOUT FOG, FOR THE 6 COMPARED ALGORITHMS, ON THE 4

TYPES OF SYNTHETIC FOG (66 IMAGES FOR EACH TYPE) AND FOR THE WHOLE DATABASE (264 IMAGES) IN THE LAST COLUMN.



Fig. 7. Principle of a Fog Vision Enhancement System (FVES): the restored
image is displayed to the driver by means of a HUD which allows the driver
to better see potential obstacles and thus decreases his reaction time.

With uniform fog, enhancement with free-space segmenta-

tion (FSS) and with no-black-pixel constraint combined with

planar scene assumption (NBPC+PA) gives the best results.

A second group of algorithms with similar performance for

uniform fog images contains: dark channel prior (DCP), no-

black-pixel constraint (NBPC) and multiscale retinex (MSR).

These last three algorithms are less efficient than the first two

due to the difficulty to restore the correct average intensity on

the road part of the image. NBPC+PA brings the performance

of NBPC at long range distances without contrast distortions

on the road part of the image thanks to the combination with

the planar assumption.

For the three types of heterogeneous fog, enhancement with

NBPC+PA leads to better results compared to FSS. This can

be explained by the fact that the FSS enhancement algorithm

relies strongly on the assumption that k and Ls are constant

over the whole image while NBPC+PA algorithm does not.

Indeed, the NBPC+PA algorithm only assumes that k and Ls
are locally constant in the image and thus, most of the time,

it performs better with heterogeneous fog compared to others.

C. Comparison on camera images

We applied the same algorithms as in the previous section

on the 10 images of the Karlsruhe database with the 4 types of

fog. The results on 5 images with a uniform fog are presented

in Figure 6. Notice how the contrast is restored for the farther

objects. The quantitative comparison is shown in Tab. II. The

results are quite consistent with previous results despite the

fact that images are in gray levels and not in colors. The

two visibility enhancement algorithms which perform best are

NBPC+PA and FSS.

VI. DRIVER ASSISTANCE IN FOG

A. Principle

In [2], it is shown that applying a visibility enhancement

pre-processing improves detection performances for sign and

road markings, by restoring the uniformity of the detection

processing over the whole image, this assumption not being

possible in case of fog. This is a key point of the deployment

Fig. 8. Illustration of the psychophysics Piéron’s law, which links the
intensity of a visual stimulus to the reaction time.

since it allows to extend the field of application of many

camera based ADAS to foggy weather. According to accident

surveys, fog accidents are few, but they are more severe and

often involve several vehicles. Indeed, dramatic pile-ups often

occur due to hard braking implied by reduced visibility in fog.

In particular, elderly people are likely to have more accidents

in fog than young people due, among other factors, to reduced

contrast perception [21]. One ADAS partially dedicated to fog

consists in adapting the speed of the vehicle with respect to

the prevailing weather conditions as proposed in [22] so as

to increase the safety margin of the driver. We believe that

visibility enhancement algorithms may also be used to develop

what we call a Fog Vision Enhancement System (FVES), as

it is already the case for night driving assistance (NVES).

The principle of a NVES is to display warm objects, like

pedestrians, using NIR or FIR cameras and to warn the driver

in case of danger [23]. NVES are shown in [24] to have

positive effects on safety and are thus being introduced into

vehicles. In the future, they will benefit from the use of Head-

Up Displays (HUD). It is thus a good opportunity to propose

a new use of the HUD. Following the principles described

in [25], images with restored contrast of the road scene can

be shown to drivers on the HUD, see for instance Fig. 7.

B. Safety Benefits

To illustrate the potential safety benefits of a FVES system,

we introduce a scenario of accident in fog. A car is stopped

on the road in presence of fog. Another car is moving in

the direction of the stopped car and the driver performs an

emergency braking when he detects, at time t = 0, the brake

or fog lights of the stopped car. During an emergency braking,

the speed of the car w.r.t the vehicle position x is expressed

as the following model, which is sufficient in our case:

s(x) =















s0 if x ∈ [0,s0tR[
√

s20−2g(µ +ν)(x− s0tR) if x ∈ [s0tR,xs[

0 if x ∈ [xs,+∞[

(18)

where tR denotes the perception-reaction time of the driver, s0
the initial speed of the vehicle, g the standard gravity, µ and
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Fig. 6. Visibility enhancement results on camera images. From left to right, the original camera image without fog, the image with a uniform fog added,
the images enhanced using multiscale retinex, adaptive histogram equalization, dark channel prior, free-space segmentation, no-black-pixel constraint and
no-black-pixel constraint combined with planar scene assumption.

Algorithm Uniform Variable k Variable Ls Variable k&Ls All types

Nothing 73.1±8.9 71.4±10.1 61.8±8.0 60.4±8.5 66.6±10.5
MSR 47.5±8.8 74.5±21.7 47.6±14.0 72.2±20.4 60.5±22.0

CLAHE 53.4±8.8 55.8±9.4 47.1±7.6 49.6±7.8 51.5±9.1
DCP 32.8±14.1 36.2±10.2 34.9±14.2 36.9±11.5 35.1±12.7
FSS 38.2±7.3 34.7±8.1 32.4±6.5 30.1±5.9 33.9±7.6
NBPC 41.8±6.7 43.0±6.4 35.8±5.3 36.5±4.8 39.3±6.7

NBPC+PA 29.8±5.9 31.5±6.8 27.3±5.7 29.6±6.7 28.8±6.6

TABLE II
AVERAGE ABSOLUTE DIFFERENCE BETWEEN ENHANCED IMAGES AND CAMERA IMAGES WITHOUT FOG, FOR THE 6 COMPARED ALGORITHMS, ON THE 4

TYPES OF SYNTHETIC FOG (10 IMAGES FOR EACH TYPE) AND FOR THE WHOLE DATABASE (40 IMAGES) IN THE LAST COLUMN.

ν the friction and the slope of the road and xs = s0tR+
s20

2g(µ+ν)
the stopping distance of the vehicle.

Our point is that the FVES allows the driver to reduce his

or her reaction time by acquiring a stronger confidence in the

presence of a vehicle ahead. This is explained by Piéron’s

law [26] which relates the reaction time to the visual stimulus

intensity. This law is expressed as:

tR = t0+αI−β (19)

where t0, α and β are positive parameters. t0 is the so-called

"irreducible" reaction time, I is the intensity of the visual

stimulus and α and β are related with the object setup and

with the involved subject. Whatever the setup and whoever

the person, the reaction time varies as an hyperbola w.r.t the

stimulus intensity, as shown in Fig. 8.

In our case, the stimulus intensity I is the intensity of

the brake or fog lights of the stopped vehicle. With the

FVES, these lights are seen in the HUD with a restored

intensity I
1−V

using enhancement factor in (11), assuming a

proper ergonomic design. Also assuming that the enhancement

algorithm does its best, we have V = p(1− exp(−kd)) where
d is the distance to the stopped vehicle and k is always the fog

extinction coefficient. Consequently, the restored intensity is

close to I
1−p

for just noticeable brake or fog lights. Therefore,

using the FVES, the reaction time of the driver is reduced by

∆tR given by:

∆tR = αI−β
(

1− (1− p)β
)

(20)

When Piéron’s law is applied in the visual domain, the

exponent parameter β is generally between 0.30 and 0.35.
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Fig. 9. Gain in reaction time ∆tR in seconds as a function of the percentage
p of enhancement and of the intensity I of the brake or fog lights.

In our scenario, two parameters cannot be set without extra

experiments with drivers: the α of Piéron’s law and the

"irreducible" reaction time t0. Indeed, they depend strongly on

the driver, in particular on age and attention which can affect

the reaction time by a factor of 2. As an illustration, in figure 9,

∆tR in seconds is shown for α = 3, β = 1/3, p ∈ [0.84,0.98]
and I ∈ [50,400]cd. The smallest gain in reaction time is

∆tR = 0.2s and the largest gain is ∆tR = 0.6s, for these values.

From (19) and (18), the vehicle speed at collision using

or not the FVES can be computed. As proposed in [22], the

speed at collision can be related to the probability of fatal

injury. Thus, from the vehicle speeds at collision, the safety

benefit of the FVES can be estimated in term of the ratio of
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Fig. 10. Safety benefit of a decrease of 0.2s of the perception-reaction time:
speed of the vehicle versus the distance to obstacle detection position and
then decrease of the probability of fatal injury with respect to distance.

probabilities of fatal injury.

To illustrate the proposed scenario, we show in Fig. 10 the

speeds and the corresponding probabilities of fatal injury for

two reaction times with a difference of 0.2s. The blue curve

is when the FVES is used, and the pink one is without the

system. To obtain these curves, we set s0 = 36m.s−1, µ = 0.7,
ν = 0, α = 3, β = 1/3, p = 0.95, I = 100cd and t0 = 0.5s.
Without the system, the collision would occur at a speed of

15.2m.s−1 for d = 120m. With the system, the collision would

occur at a reduced speed of 11.0m.s−1. Even if ∆tR = 0.2s is
small, this nevertheless induces a probability of fatal injury

divided by more than two. This illustrates how non-linear the

relation is between the reaction time and the probability of

fatal injury.

By introducing an obstacle detection algorithm in the FVES,

a bounding box can be added around detected obstacles.

Displaying this bounding box would certainly draw the driver’s

attention. Therefore, when this obstacle detection is performed

early enough, the use of obstacle detection in the FVES may

lead to an important reduction of the time where emergency

brake is initiated by the driver.

VII. CONCLUSION

Thanks to the new derivation of the local visibility enhance-

ment algorithm [1] in terms of two constraints on the inference

of the atmospheric veil, we introduce a third constraint to take

into account the fact that road images contain a large part of

planar roadway, assuming a minimum meteorological visibil-

ity distance. The obtained visibility enhancement algorithm

performs better than the original algorithm on road images as

demonstrated on a set of 66 synthetic images and on a set of

10 camera images, where a uniform fog is added following

Koschmieder’s law. We also generated three different types

of heterogeneous fog, a situation never considered previously

in our domain. The proposed algorithm also demonstrates

its ability to improve visibility in such difficult heteroge-

neous situations. Our results are successfully compared to

state-of-the-art algorithms: free-space segmentation (FSS) [2],

Dark Channel Prior [7], [8] and no-black-pixel constraint

(NBPC) [1].

Finally, potential safety benefits of a Fog Vision Enhance-

ment System, based on the proposed visibility enhancement

algorithm, are evaluated on a scenario of accident in fog using

Piéron’s law.

From this work, several improvements are possible. First,

new constraints can be added easily as a function of our

prior knowledge about the vehicle environment or coming

from other sensors such as a lidar. Second, the metric used

to compute the distance between the restored image and the

image without fog can be refined by focusing only on the

roadway and on the objects on the road, i.e the important

objects for intelligent vehicles applications [27], or by using a

model of human vision as proposed in [28]. Third, the image

rendering as well as the visibility enhancement algorithms

presented are all based on Koschmieder’s law. As explained

in [29], stray light and shadowing effect can be introduced to

improve the fog model at the cost of an increased number of

parameters. This opens new perspectives of research.
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