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Abstract—This paper proposes an improvement of Advanced
Driver Assistance System based on saliency estimation of road
signs. After a road sign detection stage, its saliency is estimated
using a SVM learning. A model of visual saliency linking the size
of an object and a size-independent saliency is proposed. An eye
tracking experiment in context close to driving proves that this
computational evaluation of the saliency fits well with human
perception, and demonstrates the applicability of the proposed
estimator for improved ADAS.
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I. INTRODUCTION

Road signs play a significant role in road safety and traffic

control trough driver’s guidance, alert, and information. They

are the main communication media towards the drivers. To

be effective, they must be visible, legible and comprehensible.

The driver being confronted with a complex visual environ-

ment, s/he must select information relevant to his driving task.

The Human Visual System (HVS) processes input images on

the basis of many criteria, depending on both the driver (acuity,

attention, interpretation, etc.) and on optical characteristics of

the road signs compared to their background.

In order to make the driver’s visual task easier, one may

wish to improve the performance of the road signs, making

them more visible and legible. One possibility, then, is to

design an Advanced Driver Assistance Systems (ADAS) in

order to help drivers to notice signs with poor saliency.

A. The Need For a Road Sign Saliency Evaluation

The saliency (also called conspicuity) of an object is the

degree to which this object attracts visual attention for a

given background [16]. The road sign saliency is thus related

to both psychophysical factors and to the photometrical and

geometrical characteristics of the road environment [5]. Of

course, engineers design road signs in order to attract the

driver’s attention [10]. Unfortunately, not all of them are seen

by all drivers [4]. No need to say that accident risk increases

when a warning sign is missed. Indeed, only few features

which account for the saliency of road signs are known. This

is due to the fact that our knowledge of the HVS is limited.

Even with the development of eye-tracking devices, measuring

the visual attention in natural context raises many difficulties.

One may wish to design an ADAS able to detect and

recognize any road signs (no overtaking, no entry, speed limits,

hairpin bed and warning signs, etc.) and to show them to the

driver on the dashboard. But due to the high number of traffic

signs along the road network, it is certainly not a good idea.

Too much alert kills the alert. However, the new version of the

BMW class 7 detects all speed limit signs and shows them on

a Head Up Display (HUD) system. This prevents drivers from

missing some of these signs, and thus increases road safety.

This kind of ADAS appear as an option in less expensive

vehicles (replacing HUD by dashboard display).

We propose to encompass more signs with such systems,

providing that the alerts are limited to the road signs necessary

for safety. Once a road sign relevant to the driver’s way is

detected, our paradigm is thus to use a computed estimation

of its saliency and to alert the drivers only in case of poor

saliency, assuming that salient signs are easily noticed by the

driver.

Fig. 1. Overview of the proposed ADAS. This paper focuses on the box
with dashed border.

The general description of this ADAS is shown in Fig. 1.

The images taken from the onboard camera are analyzed by

a road sign detector which gives to our saliency estimator the

road sign image in a window, together with its size. Then, the

proposed algorithm computes the estimated saliency. Given

the result and a saliency threshold, a decision stage tells if

the driver should be alerted, displaying the sign in a HUD or

dashboard display. This avoids drivers to miss road signs with

poor saliency.

The core of this system is an automatic diagnostic of road

signs saliency along road networks, from images taken with

an onboard digital camera. This tool may also help road

authorities and road engineers to manage a safer road.



B. Paper Structure

The following section presents the road sign detection and

its requirements. In section III, we introduce some key proper-

ties of the HVS in terms of visual attention, which is the key

concept for road sign detection while driving. In section IV,

we illustrate how to build a road sign saliency map using a

machine learning process based on SVM. Then, we present

in section V an eye tracking experiment allowing to obtain

reference data for human’s road sign perception. Section VI

compares the performance of our algorithm to human behavior.

Feasibility, needs and technical constraints with respect to the

proposed ADAS are investigated in section VII.

II. ROAD SIGN DETECTION

As we propose to evaluate the saliency of every road signs,

even if it is very low, we need a detector first. Road sign

detection and classification is still a matter of concern, and is

often addressed in Intelligent Vehicles Symposium (see [1],

[2], [7], [13], [17], [18], [19], [20]). However, to date, only few

works have presented a complete algorithm for the detection

and recognition of road signs.

Our application needs the detection algorithm to cope with

several constraints: the detection rate must be as good as

possible (no signs missed) and the false detection rate as low

as possible.

Reaching these rates implies to solve several problems. For

example, the visibility of a road sign may decrease due to

air pollution and weather conditions (rain, fog, shadows and

clouds). Road sign colors are affected by lighting conditions,

varying from day to night. Paint may flake or peel off with

time, and due to sun exposure, colors may fade. Road signs

may also be partially occluded by obstacles, such as trees,

pedestrians, other vehicles and other road signs. Moreover,

the detection algorithm, inboard a vehicle, must be robust to

motion blur due to vehicle vibration and motion. In short,

the detection stage should be robust to partial occlusions,

shadows, lighting changes, perspective distortions, and low

visibility. Readers can find states of the art and problems

related to road sign detection in [6] and [8]. These two

approaches try to solve the different problems and explore

several standard approaches based on genetic algorithms, color

indexing, distance transform, morphological methods, neural

networks, fuzzy reasoning, color thresholding, colors space,

region detection, shape analysis, and more.

For our application, the size of the road signs must also be

computed by the detector. This information may be obtained

using stereovision. Due to the fact that an object’s saliency is

related to its neighborhood’s background, the detector should

transmit together the road sign in a normalized windows,

with a bounding box around the road sign. From these data,

the proposed algorithm estimates the Intrinsical Computed

Saliency (ICS) of the road sign. Next, combining the ICS with

the size of the sign, a new model allows us to estimated its

Size-dependent Computed Saliency (SCS).

III. VISUAL ATTENTION WHILE DRIVING

For an observer, the visual selection of relevant items in a

scene both depends on the ongoing task, and on the object’s

saliency. The cognitive fonction allowing to select behaviorally

relevant items in a scene is the visual attention [14], [12]. We

can separate this function in two main components : objects

pop-up and visual search. Road signs perception depends on

both.

A. Object Saliency

This first component of the visual attention depends on

environmental events. It is stimulus-driven, and is described

as a bottom-up process (attentional saliency). It is linked to

involuntary attention.

The most popular computational saliency model of this kind,

Itti’s model, was proposed in [11]. The algorithm computes

a saliency map based on a modeling of the low levels of

the HVS. In [26], this model was tested against oculometric

data. It succeeded when the observer task was to memorize

images, but it failed when the task was to search for an object.

This model is only valid when observers do not perform any

complex task, and does not take into account the observer’s

motivations. For example, a persian cat will be more salient for

a cat lover than for a dog lover. Furthermore, an unexpected

object would attract more observer’s attention than the saliency

map would estimate.

In [3] and [22], we ran experiments in order to test saliency

maps in a context close to a driving task. We showed that

a bottom-up saliency map is not valid in such a situation,

as shown Fig. 2(left); a driver would not look at the sky,

nor at the buildings. In a driving context, the visual attention

is mainly driven by top-down process, rather than bottom-

up saliency. Among top-down process, it is worth mentioning

prior information about the objects of interest for the task.

Fig. 2. Left: bottom-up salient points using [11]. Right: salient points
obtained with the proposed approach.

B. Visual Search

The second component of visual attention depends on

the observer and his ongoing task. It is goal-driven, and is

described as a top-down processus (search saliency). It is

linked to voluntary attention, driven by the experience of the

observers, their current task and motivation.

Due to the complexity of human behaviors, there is no

available computational model of visual search (however,

see [29]). Some models of saliency in images with priors



were proposed, [16] [25]. However, they are mainly theoretical

rather than computational.

An interesting computational model of the discriminant

saliency is proposed in [9]. This model is based on the

selection of the features which are most discriminant for

pattern recognition. The image locations containing a large

enough amount of selected features is considered as salient.

The model was tested against oculometric data when the

observer’s task is to recognize if a given object is present in the

image. But it was a simple-task experience, on synthetic and

very simple images. Consequently, we fear that this feature

selection would not be able to tackle complicated situations

where a class of objects may have variable appearances, see

Fig. 3. In addition, the dependencies between features are

assumed not to be informative. Thus, there is a need for new

models of the visual saliency related to the observer’s task.

One important driving task is to look for road signs. It can

be regarded as a search task. As current computational models

of visual search are limited to laboratory-situations [15], [29],

we designed a search-object dependent model. Our goal was

to capture the priors a human learns about the appearance of

any class of relevant objects. We rely on statistical learning al-

gorithms to capture priors on object appearance, as previously

sketched in [22] and [23].

Fig. 3. A few positive samples of the ”no entry” sign learning database.

IV. A SVM-BASED SALIENCY MODEL

From the output of a road sign detector (see section II),

we compute the saliency using the classification function ob-

tained from a Support Vector Machine (SVM). The estimated

saliency is thresholded to choose whether or not the road sign

will be emphasized within a HUD.

A. Statistical Machine Learning and SVM

The general process of learning and classification follows

three steps. First, offline, the positive and negative examples

are extracted from images and labeled in two classes. The

positives are samples of objects of interest. The negatives are

samples of the background. Each sample is represented as a

signature in a feature space.

Second, offline again, from this set (the learning database)

the learning algorithm builds a smooth classification function.

To do this, we used the Support Vector Machine (SVM)

algorithm [27], which demonstrates reliable performance in

learning object appearances in many pattern recognition ap-

plications. It belongs to the class of learning algorithms based

on the ”Kernel trick” [21].

Third, using the classification function, the resulting classi-

fier is able to decide in real time if a given example (new image

window) is an object of interest or not. When the classification

is positive, the example’s signature is recognized as the object

of interest, and as the background when it is negative. The

value of this classification function is used, in our paradigm,

as a parameter for estimating the saliency of the detected road

sign.

B. ”No Entry” Road Sign Saliency

We have built a classification function associated with a

specific road sign (no-entry), using a SVM and a learning

database, in order to perform road sign classification, see

Fig. 3. We used as feature vector a 122-bin color histogram

in the normalized rb space, and the triangular kernel

K(x,x′) = −‖x− x′‖. Our choices of kernel and feature are

experimentally justified in [23].

SVM performs a two-class classification in two stages:

• Training stage: training samples containing N labeled

positive and negative image windows are used to learn

the algorithm parameters αi and b. Each image windows

i is represented by vector xi with label yi =±1, 1≤ i≤N.

This stage results in a classification function C(x) over

the feature space :

C(x) =
ℓ

∑
i=1

αiyiK(xi,x)+b (1)

where b is estimated using Kuhn-Tucker conditions, after

αi computation by minimizing the quadratic problem :

W (α) = −
ℓ

∑
i=1

αi +
1

2

ℓ

∑
i, j=1

αiα jyiy jK(xi,x j) (2)

under the constraint ∑
ℓ
i=1 yiαi = 0, with K(x,x′) a positive

definite kernel. Usually, the above optimization leads to

sparse non-zero parameters αi. Training samples with

non-zero αi are the so-called support vectors.

• Testing stage: the resulting classifier function C(x) is

applied to image windows detected as road signs to

estimate the confidence in class value.

We focus on an interesting property of the SVM and its

classifier function in order to compute the road sign saliency.

The class value C(x) is the computed confidence value about

the estimated classification. We link this estimation with the

road sign saliency. When C(x) > 0, the window x detected as

a road sign is confirmed as a ”no entry” sign. The higher C(x),
the higher the confidence, and so the higher the saliency. On

the contrary, when C(x) ≤ 0, the window x detected as a road

sign is not confirmed as a ”no entry” and thus treated as a

false detection.

C. Saliency Map Estimation

The previous section explains how a SVM algorithm can be

used to estimate the saliency of an image window at a given

scale. It can also be used at various scales, sliding windows

over the image, and thus at the same time detect a specific

road sign and compute its saliency map (see [23]). The map



of the values C(x) obtained with sliding windows on an input

image is the so-called confidence’s map of the SVM classifier.

As show in Fig. 4(a-c), depending on the sliding window size,

various confidence maps are obtained.

Then, the global confidence map is built as the maximum

confidence values over the various sliding window sizes.

Finally, to take into account the saliency of the background

around each detected road signs, the global confidence map

is translated by subtracting the mean over the so-called

background-window. The size of the background within this

window is of constant angular value for all detections. Our

experiments suggest that adding 2◦ of visual angle around

the detected sign is enough. The resulting map is defined

as the Intrinsical Computed Saliency (ICS) map, i.e. a first

estimation of the saliency when searching for ”no entry” signs

(see Fig. 4(d) and Fig. 2 bottom). Of course, in the presented

ADAS, this map is reduced to the output of the road signs

detector, i.e. the sign within the background-window.

(a) (b)

(c) (d)

Fig. 4. Confidence maps obtained, on image of Fig. 2, at several scales: (a)
40× 40, (b) 20× 20, (c) 10× 10, and (d) the final ”no entry” saliency map
obtained. The squares shows the background-windows.

V. COLLECTING REFERENCE DATA

After the description of our computational model of search

saliency, we now describe the experiment we made in order

to obtain reference data about road sign saliency in a context

close to driving. With this experiment, we obtained an objec-

tive evaluation of saliency of road signs (eye fixations) and

a subjective evaluation of their saliency (scoring). We show,

in section V-C, that the subjective and objective measures of

the road sign saliency are correlated. Then, in section VI, we

compare the SVM-based saliency evaluation to the subjective

evaluation (score).

A. Apparatus and Methods

In order to record positions and durations of the subjects’

fixations in the images, we used a remote eye-tracker [24]. Its

accuracy is 0.5◦ on the fixation point. The eye gaze sampling

rate is 50Hz. Images were displayed on a 19” LCD monitor at

a viewing distance of 70cm. Thus, the subjects saw the road

scene with a visual angle of 20◦.

Forty road images were chosen, containing a total of 76

”no entry” signs (examples are showed in Fig. 5). They were

selected with various appearances and contexts, leading to

various saliency levels for the signs.

Fig. 5. Examples of road images used in the experiments.

Subjects were asked to pretend they were drivers of the car

from which the images were taken. The images were displayed

in random order to the 30 observers. The experiment was

conducted in two phases. In the first phase, the subjects were

asked to count for the ”no entry” signs, knowing that images

will disappear within 5s . In the second phase, the subjects

were asked to rate the saliency of each ”no entry” sign by

giving a score between 0 and 10.

An example of typical scan-path is shown in Fig 6. The

subject also focused on other items relevant for the task.

Fig. 6. The scan-path of one subject searching for ”no entry” signs. Each
circle represents a fixation. The bigger the circle, the longer the fixation. The
gaze starts at the bottom center.

B. Objective Saliency Computation

In the first phase, for each picture and for each subject,

the eye-tracking data allowed to measure visual fixation lo-

cations [28]. A fixation is found when the number of data

included in a square window is above a given threshold. This



threshold, and the size of the window, are functions of the

viewing distance (70cm), the accuracy of the eye-tracker (0.5◦)

and the resolution of the display (640×480). In practice, we

took a threshold of 100ms and a window size of 32× 32

(corresponding to 1◦ of visual angle).

For each subject, the fixation’s analysis leads to know

whether s/he looks at a given road sign. Knowing the subject’s

count of ”no entry” signs in the image, we compute a subject’s

detection value which is a binary value, coding the fact that a

given sign i was noticed or not during the search task by the

subject j. For a given sign i, the mean of the detection values

over all subjects gives a Human Detection Rate (HDR) for

this sign. The detection values and the HDR are both related

to the objective saliency.

C. Subjective Saliency Computation

The subjects answers to the second phase (saliency of ”no

entry” signs), give a score(i, j) rating for subject j and sign i.

Due to the subjects variability in the use of the score scale, all

subjects scores were standardized assuming a gaussian law.

The Subject Standardized Score Saliency (SSS), related to

subjective saliency, is defined by:

SSS(i, j) =
score(i, j)−Ei(score(i, j))

σi(score(i, j))
+5 (3)

were Ei(score(i, j)) is the average score over the signs for each
subject j and σi(score(i, j)) is the standardized deviation of

the score over the signs for each subject j.

Using statistical analysis (Stata) we linked the HDR to the

SSS, for all subject. As shown in Fig. 7, the greater the sign

score (SSS), the greater the HDR. Using the score threshold of

4, we could split the graph in two main classes, bad scores and

good scores. The bad scores correspond to signs which are not

well noticed whereas the task is only to search for them. For

sure, in a real driving context this threshold would be higher,

since driving involves multiple simultaneous tasks. Moreover,

this kind of analogies may help us to evaluate the threshold

of the risk decision function (see Fig. 1) which defines signs

difficult to detect.

Fig. 7. Human Detection Rate (HDR) as a function of the Subject
Standardized Score (SSS).

VI. VALIDATION

In the experiment, the ”no entry” signs have various sizes.

We noticed a strong correlation between size and scores

meaning that observers modulate their judgement with the

size of the signs. The signs saliency rated by the observers

(SSS) depends on the signs size, whereas oui previous saliency

estimator (ICS) is size-independent. We thus defined a Size-

dependent Computed Saliency (SCS), which is related to

Human judgements, i.e. to the subjective saliency (SSS).

To do this, let us recall Ricco’s psycho-physical law of

areal summation: the contrast threshold L for the detection

of patches of light depends upon the stimulus area A:

k = L×An (4)

where k is a constant value and n describes whether spatial

summation is complete (n = 1) or partial (0 < n < 1). In our

case n = 1. We propose to substitute L with the saliency

ICS and to model the SCS as a function of ICS times the

area A. Linear regression on data log(SSS(i)), log(ICS(i)) and
log(A(i)), leads us to the following model:

SCS(i) = 4
√

ICS(i)×A(i) (5)

where A(i) is the area of the road sign i.

When comparing this SCS to the subjective saliency rated

in our experiment (SSS), a linear relation between appears

Fig. 8. Knowing the relation between HDR and SSS in Fig. 7,

this illustrates that the SCS is also correlated to the Human

Detection Rate (HDR).

Fig. 8. Size dependent Computed Saliency (SCS) as a function of Subject
Standardized Score (SSS).

Statistical analysis showed that the proposed model (5)

explains 56% of the variance between signs, and 39% overall.

The same test with a model SCS(i) = 4
√

A(i) explains 46%

of the variance between signs and 32% overall. Thus the

proposed saliency estimator improves the size-based model,

increasing the explanation of the variance by 18%.

VII. CONCLUSION AND PERSPECTIVE

In this paper, we propose a novel approach to increase road

safety by displaying alerts about road signs which are not

salient enough to be always seen and noticed by the drivers.

In addition to this ADAS, we propose a computational saliency

estimator (SCS) and a model of the relation between the size

of an object and its intrinsical saliency (ICS). We prove that

the proposed saliency model is correlated to human behavior.

Our algorithm computes the road signs saliency, and needs

to cooperate with a road sign detector. Indeed, the proposed



saliency estimator, taken as a road sign detector, does not

run in real-time basis. It takes about 10 minutes to process

a 1280× 1024 image (1 minute for 640× 480). As a conse-

quence, it needs to be associated in cascade to a fast road sign

detection algorithm. Testing only detected objects would allow

the entire ADAS (including the saliency estimation) to work

near real time (10 or 20 Herz). Indeed, the proposed saliency

estimator will be applied at only a few scales on reduced image

windows.

Due to the fact that an object’s saliency is related to its

neighborhood’s background, the sign detector should return a

window around the detected road sign, in order to give our

algorithm both the sign and its background allowing to infer

the intrinsical saliency (ICS). We experimentally obtained that

adding 2◦ around the sign is enough.

From the estimated saliency (ICS) and the size of the road

signs, we propose a model (SCS) allowing to decide whether

the sign is salient enough or not for a driver. Intelligent

vehicles can, from this decision, display only the poorly salient

road signs to the driver. The threshold for this alert can be

adjusted to the driving context by further experiments.

The SVM stage of the saliency estimator is a two-class

classifier. In our paradigm, the positive one is for the objects

of interest, and the negative one for the background. We have

tested it with one class of road signs at a time, while for the

ADAS we need to address more types of road signs. The best

solution is that the detector not only performs a detection, but

also a recognition of the class of the detected road sign, in

order to call the corresponding SVM classification function

for this class, and to compute its intrinsical saliency (ICS).

As this ADAS may also perform an automatic diagnostic

of road signs saliency along road networks from images taken

with an onboard digital camera, road authorities and road

engineers may also use this system in a dedicated vehicle in

order to assess all road signs saliency and thus to manage safer

roads.
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