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Abstract—Most road marking detection systems use image
processing to extract potential marking elements in their first
stage. Hence, the performances of extraction algorithms clearly
impact the result of the whole process. In this paper, we
address the problem of extracting road markings in high
resolution environment images taken by inspection vehicles in a
urban context. This situation is challenging since large special
markings, such as crosswalks, zebras or pictographs must be
detected as well as lane markings. Moreover, urban images
feature many white elements that might lure the extraction
process. In prior work an efficient extraction process, called
Median Local Threshold algorithm, was proposed that can
handle all kinds of road markings. This extraction algorithm
is here improved and compared to other extraction algorithms.
An experimental study performed on a database of images with
ground-truth shows that the stereovision strategy reduces the
number of false alarms without significant loss of true detection.

I. INTRODUCTION

The applications of road markings detection concern

many vision-based driver assistance systems. Over the last

two decades, many research teams have been interested

in this topic and most of them have focused on road lane

markings detection. In the context of the iTOWNS1 project,

our research is interested in detecting road markings in

images of complex urban scenes. This includes road lane

markings as well as specific markings such as crosswalks,

zebras, arrows, or pictographs. Road marking detection

algorithms are usually comprised of three stages :

– extraction of marking elements,

– geometrical model estimation,

– tracking and filtering of the parameters of the

geometrical model along an image sequence.

Of course, the efficiency of the first stage has a strong

impact on the overall performance of the system. The main

objective of this paper is to evaluate different extraction

algorithms, with regard to both lane detection and specific

markings detection, in the spirit of [18], but considering

special markings, and not only lane markings. A second
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contribution aims at proposing stereo versions of our extrac-

tors. The goal of stereo selection is to reduce the number of

false alarms which may be fairly high in urban environment.

Finally, we compare the performances of the single-image

and stereo algorithms.

Almost all extraction methods rely on the fact that road

markings are standardized objects, namely bands painted

on the road whose width and color are fixed by technical

norms and standards. In Europe, road markings are most

of the time white and more occasionally green, yellow or

blue. Different approaches have been proposed to extract

road markings from images, we refer the reader to [9] for

a global survey. In [1], the extraction is performed on the

Inverse Perspective Mapping (IPM) of the input color image

using a Gaussian filter that detects vertical strips. A similar

approach is proposed by [3] in the case of night-time road

lane detection. In [18], six extractors have been systemati-

cally evaluated on a database of 116 high-resolution images

called ROMA (www.lcpc.fr/en/produits/ride/). The

best performances were obtained by local threshold ex-

tractors. These algorithm are described in Sect. III, where

more efficient variants are also proposed. Except [18], the

extraction step is seldom assessed independently and few

authors propose a quantitative evaluation of the global road

marking detection system [9], [8].

It may be noticed that the authors rarely consider both

special markings and road lane markings. Most of the studies

on specific marking detection concern pedestrian crossings.

The detection methods are then based either on the Hough

transform [13], or on graphical models [4] or on projective

invariants [17]. To our knowledge, very few researches

have concerned other kinds of special road markings (e.g.

pictograms, text, arrows, zebras). We just mention [6] which

proposes to extract and recognize road arrows by region-

based segmentation, connected component extraction and

geometric selection. In the context of lane detection, stereo-

vision versions of markings extractors have been proposed

in [7], [6], [10], [2] and for rectangular road markings and

crosswalks, in [14].

The paper is organized as follows. We first describe, in

Sect. II, our experimental setup. Then, Sect. III introduces

our single image extraction algorithms, which are extended to

stereovision in Sect. IV. In Sect. V, single and stereo results

are compared and discussed. Finally, Sect. VI provides

conclusions and perspectives.



II. EVALUATION DATA SET, GROUND TRUTH LABELING

AND EVALUATION METRICS

A. Evaluation Data set

The database we use in this paper is called MiTowns.

It comprises 47 pairs of images of size 1920× 1080. The

images have been captured in urban area (Paris, France) by

two stereoscopic cameras mounted on an inspection vehicle

of the French Institut Géographique National IGN. For each

image, the results of the extraction algorithms are compared

to the corresponding ground truth image, in which road

marks have been manually selected. In the ground truth

images, a different label is set for each kind of marks.

The database represents a sampling of possible road mar-

kings : lane markings, crosswalks, arrows, bus lane markings,

bicycle lane markings (see Fig. 8, 1st column). Complex

situations (occluded, worn-out, dirty markings, variations in

road material) and variable lighting conditions (shadows,

bright sun) are also considered in the images selection to

build a difficult database. We note that in the iTowns project,

the images acquisition is done only during the day (not

during the night).

B. Evaluation metrics

To optimize and evaluate the performances of each extrac-

tion algorithm, we use two classical tools : Receiver Ope-

rating Characteristic (ROC) curves [5] and Dice Similarity

Coefficient (DSC, also named F-measure).

ROC curves plot the True Positive Rate (TPR) versus the

False Positive Rate (FPR). Each point of the curve corres-

ponds to a particular setting of the extractor parameters.

In this paper, all ROC curves are plotted by varying the

detection threshold TG (see Sec. III) over the range [0 ;255].

TPR and FPR are defined as :

TPR =
TP

P
FPR =

FP

N

where P and N are respectively the numbers of positives

and negatives in the Ground Truth images, TP ≤ P is the

number of True Positives and FP≤N is the number of false

positives.

When a ROC curve is always above another one, the

algorithm associated with the first ROC curve is better.

The situation is less clear when the two ROC curves cross

each other. Since the proportion of pixels corresponding to

markings in the image is small, our ROC curve analysis will

focus on low False Positive Rates (left part of the curve).

Therefore, the Dice Coefficient Similarity (DSC) is used in

complement [18]. The DSC is defined as :

DSC =
2TP

TP+FP+P

Plots of the Dice vs. the value of TG are shown in the next

sections. The maximum value of the Dice is of importance

to compare the different extractors, since it corresponds in

some way to an optimal value of the threshold TG. The width

of the peak also informs on the sensitivity of the extractor

with respect to the threshold tuning.
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Fig. 1. Comparison between the LT, SLT and MLT (50th percentile)
extractors : Roc curves (a), Dice curves (b).

III. LANE MARKING EXTRACTION USING LOCAL

THRESHOLD ALGORITHMS

In most algorithms, the extraction stage processes image

lines independently, in a sequential fashion, seeking seg-

ments that might correspond to lane marking elements.

Road markings are white (more rarely, colored, but most of

the time light) strips of constant normalized width, painted

on the dark roadway. Hence, extraction algorithms exploit,

more or less fully, the characteristics of road markings with

respect to photometry, geometry or both. To make use of

the contrast between markings and pavement, a detection

threshold, TG, is put on the intensity. From a geometric point

of view, the constant width assumption is often violated due

to wear, dirt and occlusions. Hence, instead of a threshold, an

acceptability range is defined. Since markings are observed

in perspective, this range must be adapted to the vertical

position in the image (i.e. the line number, v). We will then

denote it by [Sm(v),SM(v)]. In the following evaluation on

the Mitowns database, these parameters are fixed to same

values for all the extractors. Sm is linearly interpolated with

value 1 at the line of horizon and with value 35 at the bottom

of the image. To extract all the large markings, SM is linearly

interpolated with value 1 at the line of horizon and with value

350 at the bottom of the image. These value were obtained by

testing different values and by choosing the ones maximizing

the DSC.

Many extractors were proposed in the literature, among

which we compared in [18] the 6 most representative on a

set of 116 high-resolution images named ROMA database

available at www.lcpc.fr/en/produits/ride/. The best

overall performance on this particular test set were obtained

by Local Threshold (LT) and Symmetrical Local Threshold

(SLT) algorithms, which are now presented. In the Local



Threshold algorithm, pixels whose intensity I(u,v) is higher

than TG + Ī(u,v) are selected, where Ī(u,v) is the intensity

average over an horizontal interval of width 12SM(v) cen-

tered on (u,v). Then, sets of connected pixels whose width

is larger than Sm(v) are extracted (i.e. selected as marking

elements). The Symmetrical Local Threshold algorithm is

similar, except that two average values are computed : Īle f t
is the mean image intensity over the interval ]u−6SM(v),u],
while Īright is computed on ]u,u+ 6SM(v)]. Selected pixels

must have higher intensity than both TG+ Īle f t and TG+ Īright .

The factor 6 and 12 in the intervals were obtained by testing

different values and by choosing the ones maximizing the

ROC curve on the ROMA database.

The idea behind these algorithms is that a point of marking

is surrounded by pixels belonging to the pavement, thus

substantially darker. Ideally, the mean value(s) should corres-

pond to the representative gray level of the pavement around

the marking strip. Unfortunately, the presence of other points

of the marking, or pixels belonging to adjacent markings,

biases the estimated average towards high values. It was

shown in [11] that an efficient strategy was to use the median

instead of the mean to better estimate the representative gray

level of the pavement. The resulting algorithm will be called

Median Local Threshold (MLT) hereafter. Since it can bear

up to 50% erroneous data, the median is computed over

an interval of width 2SM(v) around position (u,v). Inspired
by [12], a fast version of the median filtering along lines has

been developped. Its complexity is a linear function of the

number of pixels in the image and does not depend on the

filter size. This leads to an average MLT processing time

of 80ms for an image of size 960× 540 on a dual-core

processor.

However, this strategy does not work in certain cases,

especially for markings such as crosswalks or zebras : it

may indeed appear that there is more than 50% white in the

interval where the median is computed. This effect is parti-

cularly visible on the MiTowns database, which comprises

many special markings, see Fig. 1 where the performances

of the LT, SLT and MLT extractors are compared.

It is then convenient to consider a lower quantile than 0.5.

To set the best value for the quantile, a series of systematic

tests was performed over the MiTowns database (samples of

ROC and Dice curves are shown on Fig. 2). The best result

is obtained for the 43rd percentile. Compared to the standard

median (50th percentile), the Dice coefficient is improved by

1.8% and the number of True Positives (TP) is improved by

17.32%. An example of this improvement is given in Fig. 3

where the results obtained by the MLT with the 50th and

43rd percentile are compared. We will therefore use the 43rd

percentile from now on in this paper.

Finally, we illustrate in Fig. 4 the results of the LT, SLT

and MLT (43rd percentile) on a test image. In this example

the detection threshold was optimized for each extractor.

There is a clear improvement of the MLT and SLT over

the LT. The difference between SLT and MLT is visually

less obvious. However, we found that the best True Positive

Rate is 65% for LT, 82% for SLT and 85% for MLT for this
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Fig. 2. Roc and Dice curves obtained for different percentiles : Roc curves
(a), Dice curves (b). The best Dice is obtained for the 43rd percentile.

particular image.

IV. MARKING EXTRACTION IN STEREO

By comparing the results obtained on the MiTowns image

database to those of [18], it might be noticed that the number

of false positives is higher here than using the ROMA

database. A possible explanation is that ROMA is comprised

of rural images while, in this paper, we consider urban -

hence much more cluttered - images. Decreasing the number

of false alarms is of a great interest, especially in the urban

context. To this end, we shall exploit the truism that markings

are painted on the road plane which, when translated into

the stereovision formalism, provides an extra selection rule.

This rule can be applied to the binary maps resulting from

the analysis of both the left and right images of the stereo

pair using a single image extraction algorithm.

A. Stereo selection

The stereo selection algorithms that will be presented now

rely on the knowledge of the position and orientation of the

road surface. This information can be obtained either off-line

or on-line :

– Off-line : The cameras inboard the vehicle are calibrated

in near field with respect to the road plane before

acquisition. Roll and pitch angles only vary slightly

along the vehicle trajectory due to curves, accelerations

and decelerations. Thus the calibration provides an

approximated road plane location for all frames.

– On-line : For each frame, the road surface can be

estimated by stereovision, see for instance [15].

Of course, the uncertainty on the road surface is larger with

the off-line approach than with the on-line one. We here use

the off-line method to test the stereo selection in the most

challenging conditions.



Fig. 3. (From left to right) original image, ground truth image (white : marking elements, black : non-marking pixels), extraction results of the MLT
algorithm (50th percentile), extraction results of the MLT algorithm (43rd percentile). Red : False Positives, blue : True Positives.

Fig. 4. (From left to right) original image, ground truth image (white : marking elements, black : non-marking pixels), extraction results of the LT
algorithm, extraction results of the SLT algorithm and extraction results of the MLT algorithm (43rd percentile). Red : False Positives, blue : True Positives.

For a simpler presentation, we now assume without that

the left and right images are in rectified stereoscopic geo-

metry (the general case can be also handled using epipolar

geometry) and that the road is planar. Let (u,v) denote the

coordinate of a point of the road plane in the left view and

let (u′,v′) denote its coordinates in the right image. It is

easy to show [15], that the mapping between views can be

parametrized as :

{

u′ = u+a0 +a1v

v′ = v
(1)

where the vertical intercept, a0, and slope, a1, are related to

the intrinsic cameras parameters as well as to the position and

orientation of the road plane. Note that this model may be

extended to a polynomial relationship to tackle longitudinal

variations of the road and that an additional term may be

introduced to account for roll angle variations, see [15] for

details. The parameters of (1) can be estimated using, for

example, the method proposed in [15]. However, in this paper

we use the fixed values estimated off-line by calibration.

In practice, conditions (1) are never exactly satisfied,

due to many factors of error. Most of them, such as the

dynamics of the vehicle, are very difficult to quantify. Hence,

we propose to consider a model of the uncertainty on u′

and to evaluate its parameters experimentally. Since pitch

angle variations are, from our experience, predominant, the

uncertainty on u′ is modeled as a linear function of the

vertical image coordinate only :

δu′(v) = b0 +b1v (2)

The uncertainty δu′ is thus parametrized by the intercept b0
and the slope, b1.

Using the mapping (1) of the road points between the

left and right images and the uncertainty model (2), two

algorithms are proposed to perform stereo selection :

– Pixel selection : Scanning the left extraction map, which

is a binary image of the extracted markings on the left

image, every marking pixel is tested. Denoting a mar-

king pixel by (u,v), a corresponding marking pixel is

searched in the right image in the range (u′±δu′(v),v).
If this search succeeds, the pixel is kept as extracted in

the left extraction map, while it is removed otherwise.

– Border selection : Scanning the left extraction map,

every pairs of left and right borders on a line is

tested. Denoting the left border by (ul ,v) and the right

border by (ur,v), corresponding left and right borders

are searched in the right image in the location range

(u′l ±δu′(v),v) and (u′r±δu′(v),v), respectively. When

this search succeeds, the pixels between left and right

borders are kept as extracted in the left extraction map ;

they are removed otherwise.

Note that, the symmetrical test (with respect to left and

right images) may also be performed to analyze the right

extraction map instead of the left extraction map. Also note

that, in terms of computational cost, the border selection

algorithm is faster than the pixel selection method. However,

the extra cost due to the stereo selection is quite small :

2ms for the border selection and 4ms for the pixel selection

in average for an image of size 960× 540 on a dual-core

processor. Notice that the stereo selection applies only in

the field of view which is common between the two views.

Therefore, for the part of the image which is not in common

field of view, extracted pixels are kept without selection.

B. Comparison between pixel and border stereo selection

A correct choice of the values (b0,b1) of the uncertainty

model is necessary to obtain efficient stereo selection. On

the ground-truth database, we computed the ROC curves for

different pairs of parameters (b0,b1) (see Fig. 5). Samples

of the obtained curves are shown for the pixel and border

based stereo selections. For pixel based stereo selection,

the best dice 0.699 is obtained for b0 = 1 and b1 = 0.1.

For border based stereo selection, the best dice 0.608 is

obtained for b0 = 5 and b1 = 0.2. These results were obtained

with marking extraction using median local threshold (MLT)
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Fig. 5. ROC curves obtained for different pairs of parameters (b0,b1) for
the pixel based stereo selection (a) and for border based stereo selection
(b), using MLT algorithm with 43rd percentile.

based on 43rd-percentile, and the same optimal uncertainty

parameters where obtained for other extraction algorithms.

As a consequence, pixel based stereo selection is shown to

be a little more efficient in terms of ROC curves and Dice

coefficient than border based stereo selection (see Fig. 6).

For illustration, Figure 7 shows results obtained with pixel

and border stereo selections.

V. EXPERIMENTAL RESULTS

A double analysis of the results may be proposed. A study

of the intrinsic performances of each extractor shows the

maximum DSC value is obtained for SLT extractor. The

TPR obtained for the optimal values TG of each single-image

extractor are not very high : 74% for SLT, 77% for LT and

69% for MLT. These values of TPR can be explained by

the difficulty of the chosen MiTowns images with respect to

the task of markings extraction. We also tested the MLT

extraction algorithm with 43rd percentile on the ROMA

image database and the results are very close to the one

obtained using 50th percentile MLT algorithm. The fact that

the MLT algorithm better performs on the ROMA database

and that it is the SLT algorithm which better performs on

the MiTowns image database is interesting. It is probably

explained by the difference in nature of the images, ROMA

database contains rural images with mostly lane markings

and MiTowns database contains urban images with many

special markings. This also indicates that it is necessary to

be careful in our conclusions. As a consequence, to select

an extractor for a specific kind of applications, it is always

requested to run an experiment to find the best one in the

set of the better extractors.

A second point of view consists in considering the ex-

tractor as a first step of a marking detection algorithm in
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Fig. 6. Comparison of the results obtained by pixel based stereo selection
and by border based stereo selection algorithms : (ROC curves (a), Dice
curves (b))

which the connected component may be considered. In this

case, what is important is to detect the object and to have

enough pixels for a correct recognition. Thus, the impact of

lost pixels when distributed around the edges is of reduced

importance.

Figure 8 presents some examples of road marking extrac-

tion from the MiTowns database using the MLT algorithm

with 43rd percentile. Looking at these images, the extractor

is robust to extract all kind of road markings as road lane

markings (Fig 8-rows 1, 5 and 6), pedestrian crossings (Fig 8-

rows 2 and 3), drawings (Fig 8-row 3), zebras (Fig 8-row 4),

directional arrows (Fig 8-row 5) and texts (Fig 8-row 6).

Moreover, it may be noticed that partly erased road markings

are also extracted as shown on Fig 8-row 1. We observe that

non-detected road markings are often located on the top half

of the image (Fig 8-row 4) where the low resolution of the

marking (due to perspective effect) increases the difficulty of

extraction task. Other missed pixels correspond to dirty or

highly erased signs (for example, see the non-detected arrow

on Fig 8-row 4).

The performances of the single-image and stereo version

of the three extractors LT, SLT and MLT are illustrated by

the ROC and DSC curves plotted on Fig. 9-a and Fig. 9-b.

Concerning the extra stereo selection, the ROC curves

show that the stereo selection reduces the number of false

alarms compared to the corresponding single-image algo-

rithm, but it also slightly reduces the number of true detec-

tion. As shown in Fig 9, for the optimal values TG, the stereo

versions of MLT extractor (resp. SLT and LT extractors)

enables to eliminate 47.34% (resp. 36.71% and 40.73%)

of false alarms but 6.88% (resp. 12.95% and 9.07%) of

true detections are also lost. Considering the Dice curves,

the improvement of performances with stereo selection is



Fig. 7. (From left to right) original image, ground truth image (white : marking elements, black : non-marking pixels), result with border stereo selection,
result with pixel stereo selection. Red : False Positives, blue : True Positives.

Fig. 8. First column original image. Second column ground truth (white : road markings, black : non-marking). Third column extractions results of the
MLT algorithm in case of single-vision. Fourth column extractions results of the MLT algorithm in case of stereo-vision (red : False detections, blue : true
detections)

obvious. The maximum of Dice Coefficient increases respec-

tively by 5.29%, 5.20% and 8.82% for the MLT, SLT and LT

extractors. Missed pixels by stereo selection are very likely

due to variations of road plane (road slope, pitch angle...).

Considering that the extraction is the first step of the

marking detection system, this loss of pixels does not appear

dramatic as illustrated on the pedestrian crossing of Fig 8-

row 2. Indeed, it is only the border which is reduced a

little, preserving the global shape of the marking and only

introducing a small bias in its location. The main advantage

of stereo selection is the decrease of FPR. It is particularly

illustrated on Fig 8-row 4 where false alarms resulting from

car extraction have been eliminated.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we addressed the problem of extracting road

marking elements in urban environment images. The problem

is challenging, due to the presence of large special markings.
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Fig. 9. Comparison between single-image and stereo versions of three
extraction algorithms : Local Threshold (LT), Symmetrical Local Threshold
(SLT) and Median Local Threshold (MLT) with 43rd percentile : Roc curves
(a), Dice curves (b)

Compared to regular lane markings, special markings are

in general more complex, have a more variable width, are

larger and are sometimes denser. Moreover, there are many

potential sources of false alarms and occlusions in urban

images taken in the traffic. The algorithm we proposed in

this paper is able to extract all kinds of road markings. The

performances of its two versions (single-image and stereo)

were evaluated and compared on a database of 47 images.

We are planning to extend this database.

The results showed that the method is efficient to extract

both road lane and special markings. Moreover, the use

of a lower quantile (43rd percentile) in the Median Local

Threshold algorithm improves the pedestrian crossing and

zebras extraction. Considering an extra stereo selection, the

number of false alarms is strongly decreased, while the True

Positive Rate is slightly reduced. As we already noticed, the

decrease of TPR is observed in terms of pixelwise detection.

It might not be dramatic for the application, provided the

subsequent steps of the process are robust to missing pixels,

as the method proposed in [16] for lane detection. This

should be confirmed by further evaluations, including the

overall process.

The fact that stereovision, when available, increases the

performances of all extraction algorithms is an encouraging

result, especially if we recall that the road plane was consi-

dered fixed to its calibrated position and orientation in our

experiments. We believe that introducing road profile recons-

truction [15] in the process will bring further improvements.
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garty. Amélioration de la reconnaissance des marquages rou-
tiers par l’optimisation d’algorithmes d’extraction. In Procee-

dings of colloque COGIST’09, St Quay Portrieux, France, 2009.
http ://perso.lcpc.fr/tarel.jean-philippe/publis/cogist09.html.

[12] S. Perreault and P. Hebert. Median filtering in constant time. IEEE

Transactions on Image Processing, 16(9) :2389–2394, september
2007.

[13] S. Se and M. Brady. Road feature detection and estimation. Machine

Vision and Applications, 14(3) :157–165, 2003.

[14] B. Soheilian, N. Paparoditis, D. Boldo, and J. Rudant. Automatic
3d extraction of rectangular roadmarks with centimeter accuracy
from stereo-pairs of a ground-based mobile mapping system. In
International Archives of the Photogrammetry, Remote Sensing and

Spatial Information Sciences, pages 22–27, Padua, Italy, 2007.

[15] J. Tarel, S. Ieng, and P. Charbonnier. Accurate and robust image align-
ment for road profil reconstruction. In Proceedings of IEEE Internatio-

nal Conference on Image Processing (ICIP’07), volume V, pages 365–
368, San Antonio, Texas, USA, 2007. http ://perso.lcpc.fr/tarel.jean-
philippe/publis/icip07.html.

[16] J.-P. Tarel, S.-S. Ieng, and P. Charbonnier. Using robust estimation
algorithms for tracking explicit curves. In Proceedings of European

Conference on Computer Vision (ECCV’02), volume I, pages 492–
507, Copenhagen, Denmark, 2002. http ://perso.lcpc.fr/tarel.jean-
philippe/publis/eccv02.html.

[17] M. Uddin and T. Shioyama. Robust zebra-crossing detection using
bipolarity and projective invariant. In Proceedings of the Eighth

International Symposium on Signal Processing and Its Applications,
volume 2, 2005.

[18] T. Veit, J. P. Tarel, P. Nicolle, and P. Charbonnier. Evaluation of road
marking feature extraction. In Proceedings of IEEE Conference on

Intelligent Transportation Systems (ITSC’08), pages 174–181, Beijing,
China, 2008. http ://perso.lcpc.fr/tarel.jean-philippe/publis/itsc08.html.


