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Abstract. In this paper, we address the problem of robustly recover-
ing several instances of a curve model from a single noisy data set with
outliers. Using M-estimators revisited in a Lagrangian formalism, we de-
rive an algorithm that we call Simultaneous Multiple Robust Fitting
(SMRF), which extends the classical Iterative Reweighted Least Squares
algorithm (IRLS). Compared to the IRLS, it features an extra proba-
bility ratio, which is classical in clustering algorithms, in the expression
of the weights. Potential numerical issues are tackled by banning zero
probabilities in the computation of the weights and by introducing a
Gaussian prior on curves coefficients. Applications to camera calibration
and lane-markings tracking show the effectiveness of the SMRF algo-
rithm, which outperforms classical Gaussian mixture model algorithms
in the presence of outliers.
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1 Introduction

In this paper, we propose a method for robustly recovering several instances of
a curve model from a single noisy data set with severe perturbations (outliers).
It is based on an extension of the work reported in [1], in which M-estimators
are revisited in an Lagrangian formalism, leading to a new derivation and con-
vergence proof of the well-known Iterative Reweighted Least Squares (IRLS)
algorithm. Following the same approach based on the Lagrangian framework,
we derive, in a natural way, a deterministic, alternate minimization algorithm
for multiple regression, called Simultaneous Multiple Robust Fitting (SMRF)
algorithm. The SMRF can be seen as an extension of the IRLS algorithm, in
which an extra probability ratio, which is classical in clustering algorithms, ap-
pears in the expression of the weights. To tackle potential numerical issues, zero
probabilities are banned in the computation of the weights and a Gaussian prior
on the curves coefficients is introduced. Such a prior is, moreover, well-suited
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to sequential image processing and provides control on the curves. Applications
to camera calibration and lane-markings tracking illustrate the effectiveness of
the SMRF algorithm. In particular, it outperforms classical Gaussian mixture
model algorithms in the presence of outliers.

The paper is organized as follows. In Sec. 2, we present the robust multiple
curves estimation problem and introduce our algorithmic strategy. The resulting
algorithm is given in Sec. 3. Technical details on its derivation and convergence
proof are given in the Appendix. In Sec. 4, connections are made with other
approaches in the domain. Finally, we apply the algorithm to road tracking and
to camera calibration, in Sec. 5.

2 Multiple robust Maximum Likelihood Estimation (MLE)

In this section, we model the problem of simultaneously fitting m curves in a
robust way. Each individual curve is explicitly described by a vector parameter
Ãj , 1 ≤ j ≤ m. The observations, y, are given by a linear generative model:

y = X(x)tÃj + b (1)

where (x, y) are the image coordinates of a data point, Ãj = (ãij)0≤i≤d is the
vector of curve parameters and X(x) = (fi(x))0≤i≤d is the vector of basis func-
tions at the image coordinate x, which will be denoted as X for the sake of
simplicity. These vectors are of size d + 1. Example of basis functions will be
given in Sec. 5.2. Note that we consider the fixed design case, i.e. in (1), x is
assumed non-random. In that case, it is shown that certain M-estimators at-
tain the maximum possible breakdown point of approximately 50% [2]. In all
that follows, the measurement noise b is assumed independent and identically
distributed (iid) and centered. In order to render the estimates robust to non-
Gaussian noise (outliers), we formulate the noise distribution as:

ps(b) ∝
1

s
e−

1
2φ(( b

s
)2) (2)

where ∝ denotes the equality up to a factor, and s is the scale of the pdf. As
stated in [3], the role of φ is to saturate the error in case of a large noise |b| =
|XtÃj − y|, and thus to lower the importance of outliers. The scale parameter,
s, controls the distance from which noisy measurements have a good chance
of being considered as outliers. The algorithm derivation is performed using
the half-quadratic approach [4, 5] revisited using classical optimization tools,
namely Lagrange duality [1]. The potential function φ(t) must fulfill the following
hypotheses:

– H0: defined and continuous on [0, +∞[ as well as its first and second deriva-
tives,

– H1: φ′(t) > 0 (thus φ is increasing),
– H2: φ′′(t) < 0 (thus φ is concave).
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Note that these assumptions are very different from those used in [3], where the
convergence proof required that the potential function ρ(b) = φ(b2) be convex.
In the present case, the concavity and monotonicity requirements imply that
φ′(t) is bounded, but φ(b2) is not necessarily convex w.r.t. b.

Our goal is to simultaneously estimate the m curve parameter vectors
Aj=1,···,m from the whole set of n data points (xi, yi), i = 1, · · · , n. The prob-
ability of a measurement point (xi, yi), given the m curves is the sum of the
probabilities over each curve:

pi((xi, yi)|Aj=1,···,m) ∝
1

s

j=m
∑

j=1

e−
1
2φ((

Xt
i Aj−yi

s
)2).

Concatenating all curve parameters into a single vector A = (Aj), j = 1, · · · , m
of size m(d + 1), we can write the probability of the whole set of points as the
product of the individual probabilities:

p((xi, yi)i=1,···,n|A) ∝
1

sn

i=n
∏

i=1

j=m
∑

j=1

e−
1
2φ((

Xt
i Aj−yi

s
)2) (3)

Maximizing the likelihood p((xi, yi)i=1,···,n|A) is equivalent to minimizing the
negative of its logarithm:

eMLE(A) =

i=n
∑

i=1

− ln(

j=m
∑

j=1

e−
1
2 φ((

Xt
i Aj−yi

s
)2)) + n ln(s) (4)

Using the same trick as the one described in [1] for robust fitting of a single

curve, we introduce the auxiliary variables wij = (
Xt

i Aj−yi

s
)2, as explained in

the Appendix. We then rewrite the value eMLE(A) as the value achieved at the
unique saddle point of the following Lagrange function:

LR =

i=n
∑

i=1

j=m
∑

j=1

1

2
λij(wij − (

Xt
iAj − yi

s
)2) +

i=n
∑

i=1

ln(

j=m
∑

j=1

e−
1
2φ(wij)) − n ln(s) (5)

Then, the algorithm obtained by alternated minimizations of the dual function
w.r.t. λij and A is globally convergent, towards a local minimum of eMLE(A),
as shown in the Appendix.

3 Simultaneous Multiple Robust Fitting Algorithm

As detailed in the Appendix, minimizing (5) leads to alternate between the three
sets of equations:

wij = (
Xt

i Aj − yi

s
)2, 1 ≤ i ≤ n, 1 ≤ j ≤ m, (6)
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λij =
e−

1
2φ(wij)

∑k=m
k=1 e−

1
2φ(wik)

φ′(wij), 1 ≤ i ≤ n, 1 ≤ j ≤ m, (7)

(

i=n
∑

i=1

λijXiX
t
i )Aj =

i=n
∑

i=1

λijyiXi, 1 ≤ j ≤ m (8)

In practice, some care must be taken, to avoid numerical problems and sin-
gularities. First, it is important that the denominator in (7) be numerically
non-zero, which might occur for a data point located far from all curves. Zero
probabilities are banned by adding a small value ǫ (equal to the machine pre-
cision) to the exponential in the probability pi of a measurement point. As a
consequence, when a point with index i is far from all curves, φ′(wij) is weighted
by a constant factor, 1/m , in (7).

Second, the linear system in (8) can be singular. To avoid this, it is necessary
to enforce a Gaussian prior on the whole curves parameters with bias Apr and
covariance matrix Cpr . Note that the reason for introducing such a prior is
not purely technical: it is indeed a very simple and useful way of taking into
account application-specific a priori knowledge, as shown in Sec. 5.3 and 5.4.
As a default prior, we suppose that the bias is zero, i.e Apr = 0, and that the
inverse covariance matrix is block diagonal where each diagonal block equals:

Cpr−1 = r

∫ 1

−1

X(x)X(x)tdx (9)

assuming that [−1, 1] is the range where x varies. The integral is the inverse
covariance matrix of the curve fitting estimator under a Gaussian noise assump-
tion which can be used for approximately modeling the truncation errors due
to image sampling. The default prior also accounts for possible correlations be-
tween basis functions, which can be helpful when using non-orthogonal bases.
The regularization term (A − Apr)tCpr−1(A − Apr) is added to (4) and (5).
Therefore, the parameter r controls the balance between the data fidelity term
and the prior.

Finally, the Simultaneous Multiple Robust Fitting algorithm (SMRF) is:

1. Initialize the number of curves m, the vector A0 = (A0
j ), 1 ≤ j ≤ m, which

gathers all curves parameters and set the iteration index to k = 1.
2. For all indexes i, 1 ≤ i ≤ n, and j, 1 ≤ j ≤ m, compute the auxiliary vari-

ables wk
ij = (

Xt
i A

k−1
j −yi

s
)2 and the weights λk

ij = ǫ+e
−

1
2

φ(wk
ij )

mǫ+
Pj=m

j=1 e
−

1
2

φ(wk
ij

)
φ′(wk

ij).

3. Solve the linear system:

[

D + Cpr−1
]

Ak =







∑i=n
i=1 λk

i1yiXi

...
∑i=n

i=1 λk
imyiXi






+ Cpr−1Apr.

4. If ‖Ak − Ak−1‖ > ǫ′, increment k, and go to 2, else the solution is A = Ak.
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In the above algorithm, D is the block-diagonal matrix whose m diagonal blocks
are the matrices

∑i=n

i=1 λk
ijXiX

t
i of size (d + 1) × (d + 1), with 1 ≤ j ≤ m. The

prior covariance matrix Cpr is of size m(d + 1) × m(d + 1). The prior bias Apr

is a vector of size m(d + 1), as well as A and Ak. The complexity is O(nm) for
the step 2, and O(m2(d + 1)2) for the step 3 of the algorithm.

4 Connections with other approaches

The proposed algorithm has important connections with previous works in the
field of regression and clustering and we would like to highlight a few of them.

In the single curve case, m = 1, the SMRF algorithm is reduced to the so-
called Iterative Reweighted Least Squares extensively used in M-estimators [3],
half-quadratic theory [5, 4], and others. The SMRF and IRLS algorithms share
very similar structures and it is important to notice that the main difference
lies within the Lagrange multipliers λij , see (7). Compared to the IRLS, the λij

are just weighted by an extra probability ratio, which is classical in clustering
algorithms.

To make the connection with clustering clearer, let us substitute Y = Aj + b
to the generative model (1), where Y and Aj are vectors of same size and respec-
tively denote a data points and a cluster centroid. The derivation described in
Sec. 3 is still valid and the obtained algorithm turns to be a clustering algorithm
with m clusters, each cluster being represented by a vector, its centroid. The
probability distribution of a cluster around its centroid is directly specified by
the function φ. The obtained algorithm is thus able of modeling the Yi’s by a
mixture of pdfs which are not necessarily Gaussian. The mixture problem is usu-
ally solved by the well-known Expectation-Minimization (EM) approach [6]. In
the non-Gaussian case, the minimization (M) step implements robust estimation,
which is an iterative process in itself. Hence, the resulting EM algorithm involves
two nested loops, while the proposed algorithm features only one. An alternative
to the EM approach is the Generalized EM (GEM) approach which consists in
performing an approximate M-step: typically, only one iteration rather than the
full minimization. The resulting algorithm in the robust case is identical to the
one we derived within the Lagrangian framework (apart from the regularization
of the singular cases). In our formalism however, no approximation is made in
the derivation of the algorithm, in contrast with the GEM approach.

We also found that the SMRF algorithm is very close to an earlier work
in the context of clustering [7]. However, to our knowledge, the latter was just
introduced as an extra ad-hoc weighting over M-estimators without statistical
interpretation and, moreover, singular configurations were not dealt with.

The SMRF algorithm is subject to the initialization problem since it only
converges towards a local minimum. To tackle this problem, the Graduated Non
Convexity approach (GNC) [8] is used to improve the chances of converging
towards the global minimum. Details are given in Sec. 5.4. The SMRF can be
also used as a fitting process within the RANSAC [9] approach to improve the
convergence towards the global minimum.
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5 Experimental Results

The proposed approach being based on a linear generative model, many applica-
tions could potentially be addressed using the SMRF algorithm. In this paper, we
focus on two specific applications, namely simultaneous lane-markings tracking
and camera calibration from a regular lattice of lines with geometric distortions.
See [13] for more detail information.

5.1 Noise Model

Among the suitable functions for robust estimation, we use a simple parametric
family of probability distribution functions, that was introduced in [1] under the
name of smooth exponential family (SEF), Sα,s:

Sα,s(b) ∝
1

s
e−

1
2φα(( b

s
)2) (10)

where, with t = ( b
s
)2, φα(t) = 1

α
((1 + t)α − 1).
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Fig. 1. Noise models in the SEF Sα,s. Notice how the tails become heavier as α

decreases.

These laws are shown in Figure 1 for different values of α. The smaller the
value of α, the higher the probability of observing large, not to say very large,
errors (outliers). This parameter allows a continuous transition between well-
known statistical laws such as Gauss (α = 1), smooth Laplace (α = 1

2 ) and
T-Student (α → 0). This can be exploited to get better convergence of the
SMRF algorithm by using the GNC approach, i.e. by progressively decreasing α
towards 0.
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5.2 Road Shape Model

The road shape features (x, y) are given by the lane-marking centers extracted
using the local feature extractor described in [10]. An example of extraction is
shown in Figure 6(b). In practice, we model road lane markings by polynomials

y =
∑d

i=0 aix
i. Moreover, in the flat world approximation, the image of a poly-

nomial on the road under perspective projection is a hyperbolic polynomial with
equation y = c0x+c1+

∑d
i=2

ci

(x−xh)i , where ci is linearly related to ai. Therefore,

the hyperbolic polynomial model is well suited to the case of road scene analysis.
To avoid numerical problems, a whitening of the data is performed by scaling
the image in a [−1, 1]× [−1, 1] box for polynomial curves and in a [0, 1]× [−1, 1]
box for hyperbolic polynomials, prior to the fitting.

5.3 Geometric Priors

As noticed in Sec. 3, the use of a Gaussian prior allows introducing useful
application-specific knowledge. For example, using (9) for the diagonal blocks
of the inverse prior covariance matrix, we take into account perturbations due
to image sampling.

Tuning the diagonal elements of Cpr provides control on the curve degree.
For polynomials, the diagonal components of the covariance matrix correspond
to monomials of different degrees. The components of degree higher than one
are thus set to smaller values than those of degree zero and one.

Geometric smooth constraints between curves can be enforced by using also
non-zero off-diagonal blocks. In particular, it is a soft way of maintaining paral-
lelism between curves. As an illustration, considering two lines y = a0 +a1x and
y = a′

0 + a′
1x, the prior covariance matrix is obtained by rewriting (a1 − a′

1)
2 in

matrix notations:








a0

a1

a′
0

a′
1









t 







0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1

















a0

a1

a′
0

a′
1









The above matrix, multiplied by an overall factor can be used as an inverse prior
covariance Cpr−1. The factor controls the balance between the data fidelity term
and the other priors. Other kinds of geometric smooth constraints can be handled
in a similar way, such as intersection at a given point, or symmetric orientations.
These geometric priors can be combined by adding the associated regularization
term (A − Apr)tCpr−1(A − Apr) to (4) and (5).

5.4 Lane-Markings Tracking

We shall now describe the application of the SMRF algorithm to the problem of
tracking lane markings.

In addition to the previous section, another interesting feature of using a
Gaussian prior is that the SMRF is naturally suitable for being included in a



8 J.-P. Tarel et al.

Kalman filtering. However, this raises the question of the definition of the pos-
terior covariance matrix of the estimate. Under the Gaussian noise assumption,
the estimate of the posterior covariance matrix is well-known for each curve:

Cj = s2
(

∑i=n
i=1 XiX

t
i

)−1

. Unfortunately, in the context of robust estimation,

the estimation of Cj for each curve Aj is a difficult issue and only approxi-
mate matrices are available. In [10], several approximates were compared. The
underlying assumption for defining all these approximates is that the noise is in-
dependent. However, we found out that in practice, the noise is correlated from
one image line to another. Therefore, all these approximates can be improved
by introducing an had-hoc correction factor which accounts for data noise cor-
relations in the inverse covariance matrix. We experimentally found that the
following factor is appropriate, for each curve j:

1 −

∑i=n−1
i=1

√

λijwijλi+1,jwi+1,j
∑i=n

i=1 λijwij

The approximate posterior covariance matrix for the whole set of curve pa-
rameters, A, is simply built as a block-diagonal matrix made of the individual
posterior covariance matrices for each curve, Cj . This temporal prior can be
easily combined with geometric priors for tracking parallel curves, for instance.

Fig. 2. Detected lane-markings (in green) and uncertainty about curve position (in
red).

Figure 2 shows the three curves simultaneously fitted on the lane-marking
centers (in green) and the associated uncertainty curves of the horizontal position

of each fitted curve (±
√

X(x)tC−1
j X(x), in red). Notice that the uncertainty on

the right sparse lane-marking is higher than for the continuous one on the center.
Moreover, the higher the distance to the camera, the higher the uncertainty, since
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the curve gets closer to possible outliers. In all these experiments, and following,
the parameters used for the noise model are α = 0.1 and s = 4.

(a) (b)

(c) (d)

Fig. 3. Two images extracted from a sequence of 240 images processed with, on (a)(b),
separate Kalman filters and, on (c)(d), simultaneous Kalman filter. The three detected
lane-markings of degree two are in green.

For the tracking itself, we experimented both separate Kalman filters on
individual curves, and a simultaneous Kalman filter. The former can be seen as
a particular case of the latter, in which the inverse prior covariance matrix Cpr is
block-diagonal so the linear system of size m(d+1) in the SMRF algorithm can be
decomposed as m linear independent systems of size d+1. Figure 3 compares the
results obtained with separate and simultaneous Kalman filters. Notice how the
parallelism between curves is better preserved within the simultaneous Kalman
filter, thanks to an adequate choice of the off-diagonal blocks of Cpr.

Figure 4 illustrates the ability of the SMRF-based Kalman filter to fit and
track several curves in an image sequence. In that case, three lane-markings are
simultaneously fitted and correctly tracked, even though the vehicle performs
several lane changes during the 150-image sequence. Notice that, while Kalman
filtering can incorporate a dynamic model of the vehicle, we only used a static
model in these experiments, since only the images were available. We observed
that it is better to initialize the SMRF algorithm with the parameters resulting
from the fitting on the previous image, rather than with the filtered parameters:
filtering indeed introduces a delay in the case of fast displacements or variations
of the tracked curves.

Moreover, we obtained interesting results on difficult road sequences. For
instance, Figure 5 shows a short sequence of poor quality images, due to rain.
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Fig. 4. Six of a 150-image sequence, featuring lane changes. Green lines show the
three fitted lane-markings centers.

Fig. 5. Fitting in adverse conditions: in this excerpt, the left lane-marking is mostly
hidden on two successive images.

The left lane-marking is mostly hidden on two consecutive images. Thanks to the
simultaneous Kalman filter, the SMRF algorithm is able to interpolate correctly
the hidden lane-marking.

5.5 Camera Calibration

We now present another application of the SMRF algorithm, in the context of
camera calibration. The goal is to estimate accurately the position and orien-
tation of the camera with respect to the road and its intrinsic parameters. A
calibration setup made of two sets of perpendicular lines painted on the road is
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(a) (b) (c)

(d) (e) (f)

Fig. 6. (a) Original image of the calibration grid. (d) Extracted lane-marking centers
(outliers are due to puddles). (b) 10 initial lines for the fitting on the vertical markings.
(e) Fitted lines on the vertical markings under Gaussian noise assumption. (c) 12 initial
lines for the fitting on the vertical markings. (f) The robust fitting yields 11 different
correct lines.

thus observed by a camera mounted on a vehicle, as shown in Figure 6(a). The
SMRF algorithm can be used to provide accurate data to the calibration algo-
rithm by estimating the grid intersections. Even though the markings are clearly
visible in the image, some of them are quite short, and there are outliers due
to the presence of water puddles. Figure 6(d) shows the extracted lane-marking
centers. When a Gaussian mixture model is used, the obtained fit is severely
troubled by the outliers, as displayed in Figure 6(e), even though the curves are
initialized very close to the expected solution, see Figure 6(b).

On the contrary, with the same extracted lane-marking centers, the SMRF
algorithm, with noise model parameters α = 0.1 and s = 4, leads to nice results,
as shown in Figure 6(f) for the vertical lines. 11 different lines were obtained
for the vertical markings, even if the initial curves where not very close to the
solution as illustrated by Figure 6(c).

6 Conclusion

In the continuing quest for achieving robustness in detection and tracking curves
in images, this paper makes two contributions. The first one is the derivation, in
a MLE approach and using Kuhn and Tucker’s classical theorem, of the so-called
SMRF algorithm. This algorithm extends mixture model algorithm, such as the
one derived using EM, to robust curve fitting. It is also an extended version
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of the IRLS, in which the weights incorporate an extra probability ratio. The
second contribution is the regularization of the SMRF algorithm by introducing
Gaussian priors on curve parameters and the handling of potential numerical
issues by banning zero probabilities in the computation of weights. ¿From our
experiments, banning zero probabilities seems to have important positive conse-
quences in pushing the curves to spread out all the data, and thus in providing
improved robustness to the initialization, as shown in the context of camera cal-
ibration. The introduction of the Gaussian prior is also beneficial in particular
in the context of image sequence processing, as illustrated with an application of
simultaneous lane-markings tracking on-board a vehicle in adverse conditions.
The approach being based on a linear generative model, it is quite generic and
we believe that it can be used with benefits in many other fields of computer vi-
sion, such as clustering or appearance modeling, registration, parametric region
fitting, as illustrated in [11, 12, 13].

Appendix

We shall first rewrite the value −eMLE(A) for any given A = (Aj), j = 1, · · · , m
as the value achieved at the minimum of a convex problem under convex
constraints. This is obtained by introducing the auxiliary variables wij =

(
Xt

i Aj−yi

s
)2. This apparent complication is in fact valuable since it allows in-

troducing Lagrange multipliers, and thus to decompose the original problem in
simpler problems. The value −eMLE(A) can be seen as the minimum value,
w.r.t. W = (wij)1≤i≤n,1≤j≤m, of:

E(A, W ) =

i=n
∑

i=1

ln(

j=m
∑

j=1

e−
1
2φ(wij))

subject to nm constraints hij(A, W ) = wij − (
Xt

i Aj−yi

s
)2 ≤ 0. This is proved

by showing that the bound on each wij is always achieved. Indeed E(A, W ) is
decreasing w.r.t. each wij , since its first derivative:

∂E

∂wij

= −
1

2

e−
1
2 φ(wij )

∑k=m

k=1 e−
1
2φ(wik)

φ′(wij)

is always negative, due to (H1).
To prove the local convergence of the SMRF algorithm in Sec. 3, we now

focus on the minimization of E(A, W ) w.r.t. W only, subject to the nm con-
straints hij(A, W ) ≤ 0, w.r.t. W , for any A. We now introduce a classical result

of convex analysis [14]: the function g(Z) = log(
∑j=m

j=1 ezj ) is convex. Due to
(H1) and (H2), −φ(w) is convex and decreasing. Therefore, E(A, W ) w.r.t. W
is convex as a sum of functions g composed with −φ, see [14]. As a consequence,
the minimization of E(A, W ) w.r.t. W is well-posed because it is a minimization
of a convex function subject to convex (linear) constraints. We are thus allowed
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to apply Kuhn and Tucker’s classical theorem [15]: if a solution exists, the mini-
mization of E(A, W ) w.r.t. W is equivalent to searching from the unique saddle
point of the Lagrange function of the problem:

LR(A, W, Λ) =

i=n
∑

i=1

ln(

j=m
∑

j=1

e−
1
2 φ(wij))

+

i=n
∑

i=1

m
∑

j=1

1

2
λij(wij − (

Xt
i Aj − yi

s
)2)

where Λ = (λij), 1 ≤ i ≤ n, 1 ≤ j ≤ m are Kuhn and Tucker multipliers
(λij ≥ 0). More formally, we have proved for any A:

−eMLE(A) = min
W

max
Λ

LR(A, W, Λ) (11)

Notice that the Lagrange function LR is quadratic w.r.t. A, unlike the orig-
inal error eMLE . Using the saddle point property, we can change the order of
variables W and Λ in (11). We now introduce the dual function E(A, Λ) =
minW LR(A, W, Λ), and rewrite the original problem as the equivalent following
problem:

min
A

eMLE(A) = min
A,Λ

−E(A, Λ)

The algorithm consists in minimizing −E(A, Λ) w.r.t. A and Λ alternately.
minΛ −E(A, Λ) leads to Kuhn and Tucker’s conditions:

λij =
e−

1
2φ(wij)

∑k=m
k=1 e−

1
2φ(wik)

φ′(wij) (12)

wij = (
Xt

iAj − yi

s
)2 (13)

and minAj
−E(A, Λ) leads to:

(
i=n
∑

i=1

λijXiX
t
i )Aj =

i=n
∑

i=1

λijyiXi, 1 ≤ j ≤ m (14)

Using classical results, see e.g. [15], −E(A, Λ) is proved to be convex w.r.t.
Λ. The dual function is clearly quadratic and convex w.r.t. A. As a consequence,
this implies that such an algorithm always strictly decreases the dual function if
the current point is not a stationary point (i.e a point where the first derivatives
are all zero) of the dual function [16]. The problem of stationary points is easy to
solve by checking the positiveness of the Hessian matrix of E(A, Λ). If this matrix
is not positive, we disturb the solution so that it converges to a local minimum.
This proves that the algorithm is globally convergent, i.e, it converges toward a
local minimum of eMLE(A) for all initial A0’s which are neither a maximum nor
a saddle point.
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