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Abstract

Transports of people and goods contribute to the ongoing 6th mass extinction of spe-
cies. They impact species viability by reducing the availability of suitable habitat, by 
limiting connectivity between suitable patches, and by increasing direct mortality due 
to collisions with vehicles. Not only does it represent a threat for some species conser-
vation capabilities, but animal vehicle collisions (AVC) is also a threat for human safety 
and security in transport and has a massive cost for transport infrastructure (TI) man-
agers and users. Using the opportunities offered by the increasing number of sensors 
embedded into TI and the development of their digital twins, we developed a framework 
aiming at managing AVC by mapping the collision risk between trains and ungulates 
(roe deer and wild boar) thanks to the deployment of a camera trap network. The pro-
posed framework uses population dynamic simulations to identify collision hotspots 
and assist with the design of sensors deployment. Once sensors are deployed, the 
data collected, here photos, are processed through deep learning to detect and iden-
tify species at the TI vicinity. Then, the processed data are fed to an abundance model 
able to map species relative abundance around the TI as a proxy of the collision risk. 
We implement the framework on an actual section of railway in south-western France 
benefiting from a mitigation and monitoring strategy. The implementation thus high-
lighted the technical and fundamental requirements to effectively mainstream biodiver-
sity concerns in the TI digital twins. This would contribute to the AVC management in 
autonomous vehicles thanks to connected TI.

Key words: Abundance modelling, animal vehicle collision, autonomous vehicle, camera 
traps, computer vision, connected transport infrastructure, deep learning, digital twin, 
risk management, ungulates

Introduction

Transports of people and goods contribute to the ongoing 6th mass extinc-
tion of species (Forman and Alexander 1998; Holderegger and Di Giulio 2010; 
Haddad et al. 2015, IPBES 2019; Grilo et al. 2021). They impact species viability 
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by three main processes (Teixeira et al. 2020). Transport infrastructure (TI) can 
have an impact on species: 1) by reducing the availability of suitable habitat 
for species (Ouédraogo et al. 2020; Kroeger et al. 2021; Fischer et al. 2022; 
Remon et al. 2022), 2) by limiting the functional connectivity between patches 
of suitable habitat (Ujvári et al. 2004; Balkenhol and Waits 2009; Safner et al. 
2011; Remon et al. 2018, 2022), and 3) by increasing direct animal mortality 
due to collisions with vehicles (Ceia-Hasse et al. 2018; Testud and Miaud 2018; 
Lehtonen et al. 2021; Moore et al. 2023).

Not only do they represent a threat for some species conservation capabil-
ities, animal vehicle collisions (AVC) are also a threat for human safety and 
security in transport when large species are involved. Animal vehicle collisions’ 
events also represent a massive cost for TI managers and users due to in-
frastructure and vehicle repair or compensations for damages (Huijser et al. 
2009). For instance, bird strikes represent a 1.2 billion US$ cost annually to the 
aerial transport sector (Allan 2000) and caused more than 700 human deaths 
since 1905 (Avisure 2019; Metz et al. 2020). Moose road-kills along a 61 km 
railway in central Norway cost 250 000 US$ annually (Jaren et al. 1991).

In Europe, terrestrial AVC often involve large mammals (Grilo et al. 2021) 
such as moose (Alces alces), roe deer (Capreolus capreolus), or wild boar (Sus 
scrofa). Animal vehicle collisions also impede conservation programs across 
the EU, particularly concerning large carnivores like grey wolf (Canis lupus), 
brown bear (Ursus arctos), or Eurasian lynx (Lynx lynx) (Bauduin et al. 2021; Gri-
lo et al. 2021). In addition, large mammal populations tend to increase across 
the EU. For instance, Ledger et al. (2022) highlighted respectively a 331% and 
287% increase of the red deer and roe deer population in the EU. Thus, a solu-
tion to ensure traffic safety without enclosing the transport network should be 
found to limit the barrier effect of transport infrastructure on large mammals 
without increasing, and rather ultimately reducing, the number of AVC (Grilo et 
al. 2021; Seiler et al. 2022).

The transport system is in a deep digital transformation with the development 
and deployment of data-driven TI management (ITF 2021). Thus, an increasing 
number and diversity of sensors is embedded into TI providing time-contin-
uous information to TI managers ultimately through the TI’s digital twin (DT) 
which is the digital representation of the physical TI (Grieves 2016; Batty 2018; 
Singh et al. 2021). Indeed, future roads are expected to become able to produce 
their own energy, be self-monitored thanks to multiple embedded sensors, be 
carbon neutral and ensure biodiversity gain. Such an autonomous system is 
expected to also produce multiple services thanks to its digital copy collecting 
and analysing the sensors’ data (Hautière et al. 2012, 2023, ITF 2023). To date, 
collected data are mainly used for TI maintenance or user safety (Moulherat 
et al. 2022). In addition to the TI management, connected TI are expected to 
provide information to the vehicle which, in turn, would become more and more 
autonomous in the near future (Seiler et al. 2022, ITF 2023). In this perspective, 
sensors embedded in the TI are providing the infrastructure digital model with 
data collected and analysed for providing relevant information that can feed 
the TI users including vehicles and therefore drivers (ITF 2021, 2023).

Unfortunately, biodiversity concerns are not yet part of this TI digital envi-
ronment which nevertheless offers a suitable place for biodiversity-based 
risk management such as AVC (van Eldik et al. 2020; ITF 2021, 2023; Djema 
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2022; Moulherat et al. 2022). Indeed, sensor-based animal recognition ability, 
thanks to artificial intelligence and, particularly, deep learning, is growing very 
fast (Tuia et al. 2022) making it possible to automatically detect and recognise 
the main species involved in AVC in the EU (Aodha et al. 2018; Demertzis et 
al. 2018; Rigoudy et al. 2022). From a TI management perspective aiming at 
reducing AVCs, the main current applications are, to date, based only on large 
mammal detection and aimed at informing drivers of the presence of a big 
animal. The animal detection can be used to animate dynamic panels or to 
threaten individuals approaching the TI with a combination of light and sounds 
with sometimes limited efficiency (Seiler and Olsson 2017). Collecting and an-
alysing species detections (and non-detections) provided by sensors in the TI 
DT would contribute to improve the AVC management. Indeed, once identified, 
a collision risk map may be produced by models able to approximate the pas-
sage rate of the species involved in AVC around the TI. In this perspective, oc-
cupancy or abundance modelling can produce spatial estimates of presence 
probability or abundance, respectively (Burton et al. 2015; Gilbert et al. 2020; 
Gimenez et al. 2022; Tuia et al. 2022). Such maps would therefore provide driv-
ers and connected vehicles with relevant context information about the actual 
risk of species involved in AVC presence.

With the OCAPI initiative, the goal is to enhance the integration of biodiversi-
ty-oriented digital facilities into the DT of TI (Moulherat et al. 2021). In this pa-
per, we develop a framework aiming to provide large mammal’s presence risk 
in the TI vicinity based on sensor-based monitoring system. The framework is 
applied on an actual AVC hotspot between ungulates (roe deer and wild boar) 
and trains in south-western France benefiting from a long-term mitigation mea-
sures program (see Suppl. material 1 for further information about the long-
term program). In this context and based on the monitoring program planned 
as well as simulation of spatially explicit ungulate’s population dynamics im-
plemented in 2021, we simulated ungulates detection stories, mapped their 
presence risk close to the TI, and tested the model performances to predict the 
theoretical AVC risk. Then, in 2022–2023, after monitoring for a single year, we 
applied the theoretical framework to the real situation to test the system for fur-
ther improvements.

Methods

The methodological framework developed and implemented in this study is 
composed of 5 major steps (Fig. 1). This framework begins with a sensor-based 
monitoring design phase (step 1 to 3) based on population dynamic simula-
tions of focal species (step 1). The framework then tests the monitoring design 
expected efficiency in an iterative process (steps 2 and 3). Step 4 of the frame-
work is dedicated to sensor-based data processing, thanks to deep learning, 
which, in turn, feed abundance models, providing a proxy of the AVC risk (step 5).

Study site

The study site is a 19.7 km section of the railway joining Toulouse to Agen 
in south-western France (Fig. 2). This section supports about 24 trains dai-
ly and was identified by the TI managers for its frequent collisions with large 
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wild mammals (mainly roe deer and wild boar). This site is part of a regional 
AVC reduction program launched by the French railway network management 
company (SNCF Réseau) in 2018 (see Suppl. material 1 for details about the 
comprehensive program). The program concerns 44 strategic sites with a high 
number of AVC, where a statistical analysis of collisions’ conditions has been 
performed (Gaillard 2013; Saint-Andrieux et al. 2020) and combined with spa-
tially explicit population dynamic simulations of ungulates to identify the most 
sensitive places to AVC (Boreau de Roincé et al. 2018). For 5 of them, scenarios 
of mitigation measures have been proposed and their cost-efficiency evaluated 
based on the expected population functioning after scenarios implementation 
thanks to new simulations (Zurell et al. 2021; Moulherat et al. 2023). At the same 

Figure 1. Framework to deploy sensors along a transport infrastructure to map the an-
imal abundance in the transport infrastructure vicinity in order to manage the animal 
vehicle collision risk.
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time, a regional camera trap monitoring program following a Before After Con-
trol Impact (BACI) design (Smith 2002) was designed to evaluate the mitigation 
measures efficiency. The main mitigation measures planed on the study site are 
the upgrading of two existing bridges by reshaping the bridges’ embankment 
(sectors 1 and 2, Fig. 2) and the fencing of 4 sections of the railway to drive an-
imals to existing or upgraded passages or safer crossing places (sectors 1, 2, 3 
and 4, Fig. 2). The work concerning the bridges upgrading is planned for 2025.

The study site benefits from a land use map produced by combining data from 
Corine Land Cover (Büttner et al. 2017), BD TOPO® (IGN 2021), ROUTE 500® 
(IGN 2020), dedicated fieldwork, and photointerpretation within a 5-km buffer 
zone around the 19.7 km of the studied railway section. Habitats have been 
characterised into 26 classes based on the standard EUNIS typology.

Ungulate population dynamic simulation

As a part of the AVC hotspot identification, we used SimOïko to perform 
spatially explicit population dynamic simulation of ungulates on the study 
site. SimOïko is an individual-based spatially explicit model developed to 
perform population viability analysis based on the MetaConnect model 

Figure 2. Study site in south-western France focused on 19.7 km of railway where numerous AVC occurred the last 10 
years. The land cover is represented using the 5 main habitat typologies as used for the statistical analysis. Camera traps 
deployed on the field are identified by a letter from A to L.
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(Moulherat, 2014). In the model, each individual of the simulated population 
is a unique agent whose virtual life is driven by stochastic processes. For 
example, survival of an individual depends on the result of a Bernoulli event 
with probability p corresponding to the average survival of the individual 
age class. The model assumes that individuals live in panmictic patches of 
suitable habitat. In this study, roe deer and wild boar, the AVC target species, 
are not explicitly modelled. Instead for the sake of simplicity, we used a 
virtual species representative of a mixture of roe deer and wild boar life his-
tory traits (Caro and O’Doherty 1999; Caro et al. 2005; Baguette et al. 2013) 
hereafter called ungulate. Suitable patches for ungulate in this landscape 
are expected to be forests and shrublands.

We modelled the dispersal behaviour of ungulate moving between suitable 
habitat patches using the SimOïko embedded Stochastic Movement Simulator 
(SMS) algorithm (Palmer et al. 2011). The SMS algorithm assumes that indi-
viduals can perceive their environment to a certain distance and tend to use 
the “easiest” path within this perceptual range. In this respect, the model needs 
a rugosity map reflecting the ability of individuals to cross the different types 
of land cover existing within the study site landscape matrix. Thus, for each 
of the 26 natural habitat types of the study site, a rugosity coefficient is as-
signed based on expert opinion on ungulate moving abilities (Dutta et al. 2022) 
(see Suppl. material 1 for the comprehensive parameterisation of SimOïko). 
SimOïko’s input maps are rasterized using a 5×5 m pixel resolution.

Simulations were initialised with 118 individuals assuming that all the po-
tential suitable patches are occupied at their maximum carrying capacity. The 
simulation runs for 100 years which is sufficient to ensure the metapopula-
tion dynamic stabilisation for at least the last 50 years (see Suppl. material 
1). Therefore, only the results from the last 50 years were used. Simulations 
were repeated 50 times.

As a result, the model provides the expected number of individuals living in 
the studied landscape and a map of the cumulative number of animal passage 
per map pixel during the simulation time (Moulherat 2014).

Monitoring strategy

To map the abundance of ungulate in the TI vicinity using the camera traps de-
ployed for another purpose (e.g. evaluate the mitigation measures efficiency), 
we mimic the expected monitoring process and analysis to evaluate its effec-
tiveness in an iterative four-step process:

1. Propose a location of camera traps scenario.
2. Use the camera trap location scenario and the movement simulation 

results to simulate detection stories.
3. Analyze the simulated monitoring results with abundance modelling.
4. Compare the movement simulation and the abundance model results in 

order to control the monitoring program ability to be used for mapping 
the abundance of ungulates. If not, come back to step 1 if some adap-
tations are possible, otherwise the ability to actually map the ungulate’s 
abundance is not expected.
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Monitoring program

On the study site, we designed a monitoring program to evaluate the efficien-
cy of 2 bridges upgrades (including fencing) (sectors 1 and 2 Fig. 2) and the 
fencing only of 2 additional sections (sectors 3 and 4 Fig. 2) in reducing AVC. 
Each section benefiting from a mitigation measure is expected to be monitored 
by a network of minimum 6 cameras. A couple of cameras are recording each 
side of the railway (entrances of bridges or observed animal’s tracks on the 
field for the fencing projects) to monitor crossing events. Two other cameras 
are deployed in forests, between 177 and 651 m from the railway, as controls 
of the ungulate activity in the surrounding suitable habitats (Fig. 2). Another 
pair of cameras are placed to survey crossing events in sections not benefit-
ing from mitigation measures as a control of the crossing activity. Additional 
cameras are added to monitor crossing events in sections not benefiting from 
mitigation measures, but with suspected high crossing frequency or for which 
simulations’ results show a possible crossing location deferment. Thus, the 
total program comprises 38 cameras each deployed for 5 years minimum and 
hereafter called Optimal scenario (SCо).

The monitoring began in August 2022. However, due to TI manager invest-
ment abilities, the monitoring could only start for the two bridges upgrading 
reducing the study site section to 11.7 km- long for the framework showcas-
ing (sectors 1 and 2 Fig. 2). The continuous deployment of 12 camera traps 
(Bolyguard, MG984G-36MP 4G) required to monitor these two sections, will be 
maintained for at least 5 years by the local hunter association and is defined as 
the actual scenario (SCа).

Both scenarios of camera trap deployment (SCо and SCа) were evaluat-
ed for their expected ability to provide relevant mapping of ungulate abun-
dance close to the TI.

Virtual and actual camera-trap data processing

Frequentation story simulation of the virtual camera traps

We used the simulated frequentation map to mimic a camera trap survey lead-
ing to a frequentation history of 30 recording occasions. Thus, for each sam-
pling occasion, the number of detections in a pixel containing a camera trap 
is simulated as a random event following a Poisson distribution. The average 
value of this distribution corresponds to the average number of passages of 
ungulates within the pixel during a single time-step of the population dynam-
ics simulation. In this respect, we divided the average number of passages of 
dispersing individuals by the proportion of dispersing individuals.

Deep learning algorithm training for wild boar and roe deer automatic 
detection

To recognise the main species (here roe deer and wild boar) involved in AVC on 
the images produced by the monitoring program, we used the YoloV8 deep neu-
ral network (Jocher et al. 2023). This model is known to be fast and accurate 



110Nature Conservation 57: 103–124 (2024), DOI: 10.3897/natureconservation.57.108950

Sylvain Moulherat et al.: Sensor-based AVC management framework for digital twin

for detecting and classifying objects in images. The model finds objects of in-
terest in a picture and creates a bounding box around them. Then the model 
assigns a category to the bounding box such as a species name in this work. 
In this perspective, we fine-tuned a YoloV8 pre-trained on the COCO data set 
(Jocher et al. 2023) with the project data set (Weiss et al. 2016).

The project data set is composed of 40 358 images provided by 41 data pro-
viders across France and annotated by 51 experts thanks to the project’s collabo-
rative annotation platform (www.ocapi.terroiko.fr). This data set was completed 
by the images of the COCO data set containing animals or vehicles. Annotations 
consist in bounding boxes drawn on the pictures and labelled with the name pro-
vided by the French national taxonomic referential (Gargominy et al. 2021). The 
dataset was split randomly into a train (80%) and validation (20%) data set. The 
train data set contained 262113 boxes from 26 labels including 1307 boxes of 
wild boar (Sus scrofa) and 418 boxes of roe deer (Capreolus capreolus). Approx-
imately 5.5% of the images were empty (no animals, humans or vehicles). Other 
frequently observed labels included humans, vehicles, foxes, badgers, dogs, cats, 
horses, chamois, lynx and leporidae, among others. We used an independent 
data set as test. The test data set is composed of 1174 images containing 212 
boxes of roe deer and 24 of wild boar. Thirteen other species with an average of 
72.8 boxes (ranging from 1 to 188) per species are present in the test data set.

Frequentation story of the deployed camera traps

Here we used the photos taken from 29 August 2022 to 16 April 2023 (33 
weeks) for 11 sites, and from 24 October 2022 to 16 April 2023 (25 weeks) for 
the site E to test the framework in real conditions. The local hunter association 
made simple annotations by identifying the species seen on the pictures (no 
bounding boxes) using 3 classes labelling system: ungulate (roe deer and wild 
boar), human/vehicle and other, including any other species and the empty pic-
tures. The data set thus produced is then called the showcase data set. When 
observations were closer than three minutes apart, only the first observation 
was kept as the camera-trap was likely triggered several times by the same indi-
vidual (Rovero and Zimmermann 2016). The observations were discretised into 
weekly intervals to generate the detection history, which records the number of 
ungulate detections per week and camera trap site.

Abundance modelling

In this paper, we do not aim to estimate the absolute ungulate abundance 
within the study site, but rather spatially estimate their relative abundance to 
identify the places with higher collision risks. To do so, we used the N-mixture 
model proposed by Royle (2004). In this respect, the study area was split into 
hexagonal cells of 200 m large, leading to 3.5 ha cell’s area. The analysis was 
performed in R version 4.3.0 (R Core Team 2023) using the pcount function 
from the unmarked package (Fiske and Chandler 2011; Kellner et al. 2023).

To test the monitoring design efficiency, we compared the normalised sim-
ulated spatial pattern of ungulate movements with the normalised abundance 
predicted by two models using different covariates. The first model (Mod1) is 
built with a single site covariate: the sum of the movements in the cell during 



111Nature Conservation 57: 103–124 (2024), DOI: 10.3897/natureconservation.57.108950

Sylvain Moulherat et al.: Sensor-based AVC management framework for digital twin

all time-steps of all repetitions. The number of sensors per cell is also used as 
detection covariate in Mod1. The second model (Mod2) is based on ecological 
covariate rather than population dynamic simulation output. Mod2 used sever-
al spatial covariates extracted from the land use map:

• The percentage of agriculture, forest, urban and water in each cell.
• The distance between the camera traps and the closest agriculture, forest, 

railway, road, urban area, water (for model parameters’ optimisation).
• The distance between the cell centroid and the closest agriculture, forest, 

railway, road, urban area, water (for prediction over all the map).

We performed a PCA with the areas of agriculture, forest, urban, water per 
cell to reduce the number of variables explaining landscape variability in the 
area while managing the correlation between variables (Gimenez and Barbraud 
2017). The two first principal components were kept, representing, respec-
tively, 84,4% and 12,9% of the variance. The first principal component mainly 
represents the gradient between forests and urban areas, whereas the second 
represents the gradient between agricultural areas and the other habitats. We 
therefore used the cell coordinates on these two axes as synthetic uncorrelat-
ed descriptors of the cell habitats’ characteristics. In the spirit of principal 
component regression (Graham 2003), the model’s covariates were selected 
on the basis of their predictive capacity, according to the Akaike information 
criterion (AIC) (Akaike 1974; Burnham et al. 2002), and their ability to represent 
the variability of the habitats in the study area. For abundance covariates, the 
distance to each habitat and the two synthetic variables were tested. For de-
tection covariates, the average weekly temperature and the weekly rainfall were 
tested. We selected the model covariates based on the actual frequentation 
story. The final model is built of three covariates, the two synthetic covariates 
from the PCA and the distance to the railway. Only Mod2, was used to map 
the actual abundance of ungulates.

Results

Testing the sampling design

The simulation process aiming at mimicking the camera trap survey under the SCо 
scenario is composed of 27 sites with 1 to 3 camera per site. The average detection 
per sampling occasion is of 21.2 occurrences (ranging from 0 to 90 occurrences).

Considering the SCа scenario, based on 12 sites with a single camera, the av-
erage detection per sampling occasion is 11.5 occurrences (ranging from 0 to 29 
occurrences). With both scenarios, all sites benefit from at least one detection.

Modelling the simulated abundance of ungulate with simulated 
frequentation stories

The sampling effectively catches most of the overall simulated movement pat-
terns, both with the expected (SCо) and actual (SCа) sampling (Fig. 3). Both 
protocols identify the same potential collision hotspots due to higher ungu-
late abundance (Fig. 3). The Mod1 model prediction is similar to the population 



112Nature Conservation 57: 103–124 (2024), DOI: 10.3897/natureconservation.57.108950

Sylvain Moulherat et al.: Sensor-based AVC management framework for digital twin

Figure 3. Normalised relative abundance of ungulates per 3.5 ha cell simulated by the population dynamic model (panels 
A and B), the Mod1 abundance model (panels C and D) and the Mod2 model (panels E and F) for SCo (panels A, C and E) 
and SCа (panels B, D and F). For comparison purposes, the normalisation was performed by normalising each cell of a 
map by the 97.5 percentile value. Regardless of the abundance modelling scenario, the sampling scenarios are expected 
to be able to identify relatively the riskiest sectors.

dynamic simulation results under SCо. However, under SCа, the global pattern 
also corresponds to the initially simulated pattern but the lack of cameras in 
cells mainly composed of forest habitats with very high simulated frequenta-
tion over-concentrates the abundance prediction in a limited number of cells. 
With Mod2, the global pattern leads to similar most frequented places in the 
landscape as Mod1 and the population dynamic results for SCо and SCа. While 
Mod1 over- concentrates the abundance in a limited number of cells compared 
to the simulation results, Mod2 tends to retrieve a similar abundance general 
pattern but to over-spread the abundance around the high abundance cores.

Estimating the actual abundance of ungulates

Automatic species recognition

On the OCAPI data set, the mAP@0.5 metric (mean average precision when the 
intersection over union (IoU) (Padilla et al. 2020), is at least 0.5) of the classifica-
tion model is 0.78 (Everingham et al. 2010). The confusion matrix is built using 
the default parameters from YoloV8 (confidence threshold = 0.25, IoU threshold 
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= 0.45). With precisions (Padilla et al. 2020) higher than 90% and recall (Padilla 
et al. 2020) ranging from about 80% to 97%, the model properly recognises the 
targeted species (roe deer and wild boar) (Table 1). Using the model on the test 
data set, performances to recognise roe deer and wild boar fall down, highlight-
ing the model’s lack of generalization ability (see Suppl. material 1).

Considering the showcase data set, with 80.8% of good classification when an 
ungulate is actually present on the pictures (Fig. 4), the model provides useful in-
formation to map the AVC risk. For 15.7% of the ungulate observation prediction, 
the picture is actually empty or contains another species (mainly badger con-
fused with wild boar, see Suppl. material 1). Fig. 4 also points out the model’s abil-
ity to identify humans and vehicles as well as other animals and empty pictures.

Figure 4. Comparison between prediction made by the model and the actual annota-
tions performed by the local hunter association on the showcase data set. Pictures 
containing roe deer or wild boar are grouped as ungulates. Similarly, the predicted “Oth-
er” class merges boxes with other animals and empty pictures. Thus, the model predic-
tions are presented under a form comparable to the one used by the hunter association. 
Details of the showcase data set processing results are developed in Suppl. material 1.

Table 1. Classification model performance. The precision reflects the model ability to 
limit the false positives’ prediction while the recall corresponds to its capability to avoid 
false negatives.

Validation data set Test data set
Number of 

annotations Precision (%) Recall (%) Number of 
annotations Precision (%) Recall (%)

Roe deer 93 92.47 79.63 212 74.06 83.51
Wild boar 352 93.18 90.11 24 79.17 19.39



114Nature Conservation 57: 103–124 (2024), DOI: 10.3897/natureconservation.57.108950

Sylvain Moulherat et al.: Sensor-based AVC management framework for digital twin

Figure 5. Normalised relative abundance of ungulates per 3.5 ha cell estimated by the Mod2 model. Ungulates abun-
dance is used as an AVC risk proxy along the railway section. The higher the abundance, the higher the AVC risk.

Mapping the actual abundance of ungulates

Mod2, implemented on the data issuing from the available 33 weeks monitor-
ing program, results in ungulates concentrated along the two rivers crossed by 
the railway and in the Bouconne forest in the western part of the site (Fig. 5).

Discussion

In this paper, we associated methods from ecology, data science and engi-
neering to develop a 5-steps framework for AVC management on a linear 
transport infrastructure (Fig. 1). Our showcase was developed on a railway 
section but the framework fits with any type of transport infrastructure (see 
Suppl. material 1). Developing and actually implementing this framework on 
the field demonstrates that managing the AVC risk thanks to appropriate sen-
sor deployment and data analysis is challenging (see Suppl. material 1) but 
possible. However, the showcase highlights that many technical as well as fun-
damental improvements are required before deployment may be possible in 
future transport infrastructures.

Embedding biodiversity relevant sensors into the infrastructure

We implemented the framework for an existing TI benefiting from a specific 
monitoring program. Because biodiversity monitoring is not the central job of TI 
managers, we can hardly expect that they would deploy a sensor network specif-
ic for that purpose. Thus, our framework was developed to be conveniently part 
of an existing network dedicated to other goals (here evaluating the mitigation 
measures efficiency). However, steps 1 to 3 (the sensor-based monitoring de-
sign phase) may be part of the TI conception phases and particularly contribute 
to environmental impact assessment. Indeed, population modelling is increas-
ingly used for decision making including an environmental impact assessment 
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(Tarabon et al. 2021; Zurell et al. 2021; Boileau et al. 2022; Moulherat et al. 2023) 
and monitoring programs are expected to be part of the environmental impact 
assessment in order to control that the mitigation measures are efficient enough 
to ensure the “no net loss” of biodiversity (European Parliament 2014). Such a 
framework paves the way for the integration of biodiversity-oriented monitoring 
systems into the TI and its vicinity in line with proposals done for hydraulic man-
agement (Wang et al. 2022) or user safety (Proto et al. 2010).

If using existing cameras around the TI or embedding ones dedicated to bio-
diversity monitoring may contribute to map the AVC risk, their deployment must 
be optimised to ensure the system cost efficiency as well as its sustainability 
(Hautière et al. 2012, 2023). In this respect, literature issuing from sensor-based 
biodiversity monitoring systems provides recommendations (e.g. distance be-
tween devices, recording frequencies, etc) (Evans et al. 2019; Kays et al. 2020; 
Nawaz et al. 2021). Unfortunately, these recommendations are often hardly ap-
plicable to the survey of linear structures such as roads, railways or channels. 
However, based on the three first steps of the proposed framework, scenarios 
of sensors network deployment can be tested and ultimately optimised by au-
tomatically removing or adding devices in the sensor network.

Developing performant artificial intelligence to recognise species 
involved in AVCs

The recognition algorithm fine-tuned in this work is not general enough to 
properly perform in operative conditions. The moderate performances of the 
model are due to multiple factors such as the number of annotated data used 
to train the model and particularly the lack of pictures taken in operative-like 
conditions. To improve these performances, we successfully used DeepFaune 
which was trained on larger data set to recognise our focal species among 
other French common ones (Rigoudy et al. 2022). Albeit the marginal perfor-
mance improvement on the data from the showcase, its use in other places of 
the general monitoring program shows very poor performances, for instance 
when cameras are elevated and animals for which only the back can be seen. 
To address these current limitations, further recognition algorithms developed 
to ultimately map AVC should focus on a limited number of relevant species 
and on the deployment conditions (e.g. sensor orientation, image quality, etc.). 
In addition, the use of deep learning to recognise species leads to changes 
in the form of the abundance model inputs (false positives, uncertainty in the 
recognition, etc.). Further research in the domain of statistical analysis of eco-
logical data may adapt to this new form of input data (Chambert et al. 2018; 
Tabak et al. 2020) and may help in overcoming the current limited performance 
of recognition algorithms to ultimately produce an AVC risk map.

From a static map of avc risk to real time driver information

As sensors collect data continuously, our framework could possibly be improved 
by using abundance or occupancy models in continuous-time (Guillera-Arroita 
et al. 2012, 2012). Continuous-time data discretised do not respect the math-
ematical hypothesis of classical discrete-time models, as sampling occasions 
are not temporally independent (Barbour et al. 2013). A continuous-time model 
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would make our framework more objective and reproducible, as the discreti-
sation period is chosen arbitrarily (Rovero and Zimmermann 2016; Schofield 
et al. 2017; Rushing 2023), as well as the time interval in which images are re-
moved because they are likely to be the same individual, and would avoid losing 
information (Kellner et al. 2022). Continuous-time models have recently been 
developed for unmarked populations (for example Guillera-Arroita et al. (2011) 
for occupancy, Guillera-Arroita et al. (2012) for abundance, and even Kellner et 
al. (2022) for co-occurrence), which could be useful for collisions-involved spe-
cies whose distribution is strongly linked to other species (Hebblewhite 2007; 
Rioux et al. 2022). This framework would also improve with the development of 
incremental learning (Zhu et al. 2022), to produce dynamic adaptive maps that 
could be ultimately sent to connected vehicles.

Mainstreaming biodiversity in the digital twins of transport 
infrastructure

Digital twins are developing regardless of the TI type (e.g. road, railway, airport, 
etc) and the framework we proposed can be applied to any type of TI with, for 
instance, some adaptation for bird detection in a 3D explicit digital environ-
ment to manage collisions with planes (Dziak et al. 2022). Similar approach-
es are also being designed for the development of smart cities and territories 
(Catalano et al. 2021). Generalising biodiversity monitoring integration in the 
interconnected digital twins of the built environment offers a great opportunity 
to contribute to the survey of biodiversity global trends as a co-benefit of the 
ongoing digitalisation of landscape management (ANZLIC 2019; Singh et al. 
2021; Moulherat et al. 2022).
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