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ABSTRACT:

The fog disturbs the proper image processing of many outdoor observation tools. For instance, fog reduces the obstacle visibility in

vehicle driving applications. Usually, the estimation of the amount of fog in the scene image allows to greatly improve the image

processing, and thus to better perform the observation task. One possibility is to restore the visibility of the contrasts in the image from

the foggy scene image before to apply the usual image processing. Several algorithms were proposed in the recent years for defogging.

Before to apply the defogging, it is necessary to detect the presence of fog, not to emphasis the contrasts due to noise. Surprisingly, only

a reduced number of image processing algorithms were proposed for fog detection and characterization. Most of them are dedicated to

static cameras and can not be used when the camera is moving. The daytime fog is characterized by its extinction coefficient, which

is equivalent to the visibility distance. A visibility-meter can be used for fog detection and characterization, but this kind of sensor

performs an estimation in a relatively small volume of air, and is thus subject to heterogeneous fog, and air turbulence when the camera

moves.

In this paper, we propose an original algorithm, based on entropy minimization, to detect the fog and estimate its extinction coefficient

by the processing of stereo pairs. This algorithm is fast, provides accurate results using low cost stereo cameras sensor and, the more

important, can work when the cameras are moving. The proposed algorithm is evaluated on synthetic and camera images with ground

truth. Results show that the proposed method is accurate, and, combined with a fast stereo reconstruction algorithm, should provide a

solution, close to real time, for fog detection and extinction coefficient estimation for moving sensors.

1. INTRODUCTION

Even if fog is rare, fog impacts the quality of the results of many

images processing algorithms when applied on outdoor scenes,

see Fig. 1. For example, fog reduces vehicle and obstacle visi-

bility when driving, which leads to death injuries. Solutions have

been investigated to tackle the problem of reduced visibility when

fog is around the vehicle. One possibility is to detect fog, turn on

the fog lights and depending of the importance of the fog which

is measured by the extinction coefficient β, adapt the strength of

the fog lights, as demonstrated in ICADAC project1. An alterna-

tive is to display to the driver an image of the scene ahead of the

vehicle after visibility restoration by image processing, see for

instance (Tarel et al., 2012).

Fog detection and characterization is thus an important question

to deal with in these problems. Several algorithms were proposed

for defogging, in particular in the recent years. A first class

is based on color and contrast enhancement, for instance (Job-

son et al., 1997, Zuiderveld, 1994). A second class is based

on the Koschmieder’s law to model the effect of the fog, for in-

stance (Tan, 2008, He et al., 2010, Tarel and Hautière, 2009, Tarel

et al., 2010). With a linear response camera, the Koschmieder’s

laws gives the apparent intensity I of an object as a function of

its intrinsic intensity I0 and of the fog extinction coefficient β:

I = I0e
−βD + Is(1− e

−βD) (1)

Thanks to the FUI AWARE project for partial funding.
1ICADAC project (6866C0210) is within the Deufrako program and

was funded by the ANR (French National Research Agency).

where D is the object depth, and Is is the intensity of the sky. The

”meteorological visibility distance” is defined conventionally, as

a function of β, by:

dvisibility = −
ln(0.05)

β
(2)

In (Tarel et al., 2012), experiments shows that algorithms based

on the Koschmieder’s law generally do better than the ones not

based on this law. If most of the time, the value of β is not neces-

sary to perform the defogging, one may notice that, when applied

to road images, the value of β is necessary to use the planar road

assumption. The detection of the fog is also necessary, not to

apply defogging methods when it is useless.

Surprisingly only a reduced number of methods were proposed

for detecting fog from a camera and for estimating the extinc-

tion coefficient β. Most of these methods apply only when the

camera is static. The first approach is to estimate the decrease of

contrast of far away objects, see for instance (Bush and Debes,

1998, Hautière et al., 2011). In (Kopf et al., 2008), the attenu-

ation model due to fog is estimated assuming that a 3D model

of the scene is known. This method is interesting since it shows

that the Koschmieder’s law is not always valid on long range dis-

tances due to heterogeneous fog. The difficulty with this method

is that an accurate 3D model is required. When the camera is

moving, only three approaches were proposed, the first one is

based on the use of lane-markings, the second on the road planar

assumption and the third on the use of the stereo. In (Pomerleau,

1997), β is obtained by looking the contrast attenuation of road

markings at various distances. The disadvantage of this method

is that it requires the presence road markings in order to proceed.

In (Lavenant et al., 2002, Hautière et al., 2006b), it is proposed



Figure 1: Contrast fading on the same scene due to various values of the extinction coefficient β.

a method dedicated to in-vehicle applications. This method as-

sumes that the road is planar with a homogeneous gray level,

and that the camera calibration is known with respect to the road

plane. In case of fog, the gray level profile on the road, in the

vertical direction, is derived from (1) and it shows an inflection

point. The position of this inflexion point can be used to estimate

the value of β. The weakness of this method is that several as-

sumptions are required for the method to work. Another problem

is that the inflexion point may be hidden by a close object in case

of a light fog. In (Hautière et al., 2006a), a stereovison approach

is proposed. It consists in detecting the most distant object with

a contrast above 5%. This method is simple but it is requires the

presence of objects with high contrasts at every distances, and

this is not always the case in practice.

From the drawbacks of the previous fog detection and fog char-

acterization methods when the camera is moving, we see that a

generic method is needed. We thus proposed a generic method

which is based on stereovision. In (Caraffa and Tarel, 2013), a

MRF model for stereo reconstruction and defogging is proposed.

By minimizing this energy, β can be estimated. However, this

approach will lead to a slow iterative algorithm to produce good

results. Inspired by (Caraffa and Tarel, 2013), we here investigate

the estimation of the extinction coefficient β when an approxi-

mate depth map is provided upon a critical distance. We thus

assume that a fast stereo reconstruction was first applied and that

this algorithm provides enough good matches upon the critical

distance. When the depth is known, the main idea is to estimate

β from the attenuation of the contrast w.r.t the distance on ho-

mogeneous areas in the scene. Similarly to the case of shadows

removal (Finlayson et al., 2009, Kwatra et al., 2012), the Shan-

non entropy is used as a criterion and the proposed method for

estimating β consists in the entropy minimization of the restored

image. The advantage of the proposed approach over previous ap-

proaches is that it is generic and we do not need the whole range

of distances in the depth map. The proposed algorithm, combined

with a real time stereo reconstruction algorithm, should provide

a fast algorithm for estimating the extinction coefficient (which

includes the detection of foggy weather using a threshold on the

visibility distance) when the camera is moving. As shown in the

experiments, it leads also to accurate results when the camera is

static.

First, in section 2., the problem of fog detection and extinction

coefficient estimation is explained and our approach is presented.

Then, the algorithm is detailed in section 3.. In section 4., the pro-

posed algorithm is evaluated on a synthetic database for a moving

camera and evaluated with a ground truth database for static cam-

era images.

2. PROBLEM STATEMENT

When a region with a uniform albedo is observed in presence of

fog, its image is not of constant intensity. Indeed, its image be-

comes whiter with an increasing depth. This is due to the last

additive term in (1), the so-called atmospheric veil which is an

increasing function of the depth D. The Shanon entropy is a

measure of the redundancy of a probability distribution. As a

consequence, the entropy of the intensity distribution of a region

of constant albedo, i.e without fog, is very small. On the con-

trary, the entropy of the same region in presence of fog is larger if

the region span a large range of depths. Our main idea is thus to

estimate the extinction coefficient β as the value which gives the

restored image with the smallest entropy on regions of constant

albedo.

The Fig. 2. illustrates the principle of the proposed method. A

foggy image is shown in the Fig. 2(a). We search for regions of

constant albedo. We thus propose to segment the foggy image

in regions where the intensity varies slowly, see Fig. 2(b). Some

of the obtained regions, such as the fronto-parallel regions, or

the regions with small depth variations are not adequate for the

estimation of β and thus must be rejected. Relevant segmented

regions are thus selected using a criterion on the region area and

on the region depth variations. In Fig. 2(c), this criterion leads to

the selection of only three regions. In Fig. 2(d), 2(e) and 2(f), the

image after restoration assuming different values of β are shown,

respectively with β = 0.0024, β = 0.0086 and β = 0.0167.

These restorations are simply obtained by inversing (1), i.e by

computing I0, for each pixel, from the foggy image I , from the

value of Is and from the depth map D. The correct value for β

is the second one, and was obtained using a visibility-meter. We

can see that, when β is too small, the restored image is still foggy

and the gradient due to fog on homogeneous regions is percepti-

ble. Conversely, when β is too large, far away parts of the image

become too dark. For the ground-truth value β = 0.0086, the re-

stored image is more homogeneous and thus looks better than the

others. In Fig. 2(g), 2(h) and 2(i), the gray level distributions on

the 3 selected regions are displayed after defogging. We can see,

for the correct value β = 0.0086, that the gray level histogram

of each region is tighter than for the other values of β. There-

fore, the entropy is smaller for this value compared to the two

others. Fig. 2(j) shows the entropy of each selected regions ver-

sus β. It appears that a minimum of the entropy is reached around

the ground-truth value of β for the tree selected regions. Finally,

in Fig. 2(k), the total entropy over the three selected regions is

displayed versus β. The total entropy on the image is also shown.

The previously used values of β are displayed as vertical lines.

It is clear from that figure, that the minimization of the sum of

the entropy over the selected regions allows to better estimate the

value of β by doing an averaging on the three selected regions.

The minimum of the sum of the entropy over the selected regions

is very close to the ground truth value. On the contrary, the en-

tropy over the image does not lead to a good estimate. Indeed,

the entropy over the image intensities is mixing several random

variables and can not be a coherent choice.

3. ALGORITHM

The used sensor is stereo cameras. For every stereo pair, the

stereo reconstruction is performed by one or another method. The

choice of the stereo reconstruction algorithm is studied in the next
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Figure 2: Variation of the entropy with and without segmentation for different value of β. On the first line, 2(a) is the foggy image

where the ground-truth is known: β = 0.0086, 2(b) is the used segmentation and 2(c) are the three selected regions. On the second

line are the restored images for different value of β, when the depth-map D is known. Next, the gray level histograms of the intensity

distribution on the selected regions are shown for three different values of β. Then, 2(j) shows the entropy of the three selected regions

versus β and 2(k) shows the sum over the selected regions of the entropy compared to the image entropy. In the last figure, vertical

lines displays the value of the three β values used previously.



section experimentally, where it is shown that the stereo recon-

struction only needs to be correct in a relatively short range of

distances close to the cameras. The input of the proposed fog

detection and characterization algorithm are thus an input cam-

era image I(x) observed with or without atmospheric scattering

and the corresponding depth map D(x) obtained from the stereo

reconstruction.

When I(x) and D(x) are known, in the equation (1), the extinc-

tion coefficient β , the restored image I0 and the intensity of the

sky IS remains unknown. The first step of the algorithm is thus to

estimate IS in an original way. Then, given a β, the restored im-

age I0 can be computed by solving (1). The second step consists

in searching the value of β which minimizes the total entropy of

the gray level distributions over selected regions of the restored

image.

3.1 Estimation of IS

In defogging methods, the intensity of the sky is usually obtained

using simple methods such as the selection of the maximum in-

tensity in the image, or as the value corresponding to a given

quantile on the intensity histogram, see for instance (Tan, 2008,

Tarel and Hautière, 2009). If this kind of approach gives approx-

imate results in practice, we observed that an accurate IS is im-

portant to estimate correctly the value of β. In particular, the fog

being not necessarily homogeneous on long range distances, it is

necessary to estimate a correct value of the IS in the close sur-

rounding of the camera.

We thus introduce a first novel and simple method, based on con-

trast detection using the Sobel operator to estimate IS . First, we

compute the Sobel operator on the input image. Second, pixels

with a gradient magnitude larger than an arbitrary threshold are

selected. Third, we chose IS as the highest intensity value in the

vicinity of the pixels selected by the gradient thresholding.

This previous method can be applied on static or moving cameras.

When the depth-map of the observed scene is known with enough

accuracy, in particular when the scene is static, a little better can

be done. In such a case, the value of IS can be estimated by

taking the maximum intensity at the farthest distance detected

by the pixels selected by the gradient thresholding. This refined

method gives better results as shown in the experiments.

3.2 Region selection

The entropy minimization is meaningful only on a set of regions

with constant albedo and with varying enough depths. The in-

put image is thus segmented in regions where the intensity varies

slowly. The regions with constant intensity or fronto-parallel to

the image are rejected as well as the tiny regions which are use-

less. The used criterion for this selection is to select regions with

a depth range higher than 10% of the whole image depth range

and with an area higher than 2% of the number of image pixels.

This segmentation can be performed with advantages on a clear

day image when a static sensor is used. The segmentation can be

also performed on both the image and the depth map, when the

depth map is enough accurate.

3.3 Estimation of β and I0

Once IS is estimated, I0 can be obtained for a given β by solving

equation (1). To measure the quality of the restored image I0, we

use the Shannon formulation of the entropy defined for a random

variable y ∈ Y :

H(Y ) = −E[log p(y)] = −

∑

y∈Y

p(y) log p(y) (3)

where E is the expectation function and p(y) is the probability

density function of variable y. The entropy is defined for a sin-

gle random variable, but for several independent variables, the

entropy of the set of these variables is the sum of the individual

entropy.

Actual scenes are composed of many objects, and thus its image

is composed of several regions, and each region have its own ran-

dom variable. Let Sc the set of selected regions in the previously

described step. The total entropy is thus computed on this set of

selected region as:

TH =
∑

Yi∈Sc

H(Yi) = −

∑

Yi∈Sc

∑

y∈Yi

p(y) log p(y) (4)

The total entropy is computed for a set of possible β values, and

the estimate of β is obtained as the value minimizing the total

entropy (4). This computation is quite fast, since only pixels in

the selected region with valid depths need to be considered and

restored.

Due to wrong estimates in the depth map, due to heterogeneous

fog, the intensity after restoration can be saturated and becomes

black. This case appears for the ground-truth value of β = 0.0001
in the Fig. 3(e) where remote objects are black on the right of

the image. This is due to the fact that the fog is lighter in this

area. Not to be perturbed by this saturation, a maximal percent-

age of black pixels is allowed and β values with restorations with

a larger percentage are discarded.

3.4 Summary

To resume, the proposed algorithm is the following:

• Detection of the pixels with a gradient magnitude higher

than a threshold on the input intensity image I(x). IS is

set as the highest intensity in the vicinity of these detected

pixels.

• Segmentation of I(x) in regions and selection of the reliable

regions Sc by a threshold on the depth range and on the area.

• For each β, in a set of possible increasing values:

– Compute the restored image for the pixels in the se-

lected regions Sc, when the depth mapD(x) is known,

using:

I0(x) = I(x)eβD(x)
− IS(e

βD(x)
− 1)

– Compute the total entropy TH over the segmented re-

gions of the restored intensity distributions I0 using

(4).

– Count the number of black pixels in the restored im-

age I0, and if this number is higher than a threshold,

the search on higher β values is stopped.

• The solution is given as the value of β which minimizes the

total entropy (4).

In Fig. 3, the total entropy on the three selected regions is shown

versus the value of β. The ground-truth β values are shown as

vertical lines. This figure shows how the ground-truth is close of

the minimum of the total entropy, in various weather conditions.
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Figure 3: Normalized total entropy versus β on the same scene with different weather conditions. The ground-truth β measured with a

visibility-meter are shown (0.0001, 0.0046, 0.0086 and 0.0244) as vertical lines.

3.5 Complexity

Computing the entropy of each intensity is linear according to

the number of pixel. If β has K possible values and the image

N pixels, The complexity of the proposed algorithm is O(KN).
The proposed algorithm can be easily parallelized. Indeed, the

restored image for each beta can be computed independently and

the entropy can be computed with a map-reduce approach.

4. EVALUATIONS

To evaluate the proposed algorithm, we need foggy images with

a visibility distance ground-truth. A visibility-meter can be used

for the ground-truth. However and until now, we are not able

to have moving stereo images of foggy scenes with a ground-

truth. Indeed, the measures obtained by a visibility-meter are

very perturbed by air turbulence around the sensor when it is on a

moving vehicle. This is probably due to the fact that a visibility-

meter uses a relatively small volume of air for its measure. As

a consequence, we rely on synthetic images to experiment with

moving scenes. For static scene, we rely on camera images.

4.1 Static sensor

The input of the proposed algorithm being an intensity image and

a depth-map, we evaluated it using the Matilda database intro-

duced in (Hautière et al., 2011). The Matilda database provides

a sequence of more than 300 images from a static low cost cam-

era during three days (night and day) with the visibility distances

from a visibility-meter. An approximate depth map of the scene

is also provided. In this database, the visibility varies from 100m

to 15km, and the accuracy of the used visibility-meter is around

10%. The maximum distance in the depth map is 1300m.

To challenge the proposed algorithm, we also performed tests

where the image is processed in a reduced range of depths. Thus,

the evaluation results are presented in two cases: in the first case,

all the depth map is used (denoted Dmax(IS)), and in the sec-

ond case, only the pixels with a depth lower than 50m are used

Range (m) 0-250 0-500 0-1000 all

number of images 9 19 24 198

Single image segmentation

Dmax(IS) 10.0% 9.1% 11.7% 97.3%
Dmax = 50m 7.1% 7.1% 10.0% 91.5%

Images segmentation

Dmax(IS) 25.4% 17.2% 20.7% 101.7%

Table 1: Mean relative error between the estimated visibility dis-

tance and the ground-truth on the Matilda database for different

distance ranges, with a single image segmentation. The first line

is obtained from the maximum distance Dmax where IS is ob-

served and the second line is for a shorter and fixed distance

Dmax = 50m. On the last line, the segmentation is computed

on every image, to simulate the situation of embedded sensors in

a moving vehicle.

(denoted Dmax = 50m). The camera being static, the segmen-

tation in region is performed a single time on an image with

clear weather conditions using the algorithm proposed in (Felzen-

szwalb and Huttenlocher, 2004). We thus use the same selected

regions for all the proceeded images in the sequence. This al-

lows to evaluate the visibility distance estimation without the ex-

tra source of errors due to the segmentation process. The effect

of applying the segmentation on every image is also tested.

Tab. 1 shows the evaluation results in term mean relative error on

the visibility distance. We can see that the algorithm produces

results with a similar accuracy than the visibility-meter, up to

1000 meters. Notice that results are even better when the dis-

tance range is limited to 50 meters. This can be explained by the

fact that fog is not always homogeneous, and a short range allows

to better fit the ground-truth which is measured close to the cam-

era. In these experiments, the second variant on the IS estimation

is used to achieve better results. Fig. 4 shows the results during

two foggy in the morning days, with an image every 10 minutes,

night images are skipped. These results show that the proposed

algorithm is able to clearly discriminate between visibility dis-

tance lower or higher than 500m. The distance were fog is no
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With ground truth distance

Mean relative error 4.67%

With stereo reconstruction depth map

Mean relative error 16.03%

Table 2: Mean relative error between the estimated visibility dis-

tance and the ground-truth value on 66 synthetic stereo images

from Frida3 database. In the top part, the ground-truth depth-

map is used and in the bottom part, the depth-map comes from

the stereo reconstruction using Libelas algorithm.

more considered in driving situations is 500m.

4.2 Moving sensor

In the case of a moving sensor, we evaluate the proposed method

on 66 synthetic stereoscopic images with uniform fog from the

database named Frida3. This database was introduced in (Tarel

et al., 2012) for stereo reconstruction and restoration evaluation

and contains a ground-truth: the images without fog and the as-

sociated depth-maps.

To study the effect, on the estimated β, of bad matches in the

stereo reconstruction, we compared the case where the ground-

truth depth-map is used with the case where the depth-map comes

from a fast stereo reconstruction algorithm. In practice, we use

the Libelas algorithm which is very fast and is dedicated to road

scene images (Geiger et al., 2010). Tab. 2 shows the obtained

results in terms of mean relative error on the estimated visibility

distance in the two cases. Results obtained using the ground-truth

depth-map are very accurate, when the stereo reconstruction is

used, accuracy is lower but still of good quality.

5. CONCLUSION

In this article, we propose an original method for estimating the

extinction coefficient of the fog or equivalently the meteorolog-

ical visibility distance. The proposed method is based on the

entropy minimization of the restored image on pixels where the

depth is known. The depth-map can come from a 3D model of

the scene, or from a stereo reconstruction as well. The results

obtained on a static scene are as accurate that what is usually

obtained with a visibility-meter, when the depth-map is of good

quality. The proposed algorithm can be also used with a moving

sensor and is tested with success on synthetic stereo images. The

proposed algorithm have several advantages. First, a small depth

range can be used to characterize a visibility distance 10 times

larger than the maximum depth in the depth-map. This is impor-

tant for vehicular applications where obstacles or other vehicles

can hide a large range of distances. Another important conse-

quence is that the used stereo reconstruction algorithm needs to

provide good matches only up to a critical distance which is much

lower than the visibility distance. Second, the proposed method

is close to real time and it is fast enough to investigate real-time

applications for vehicular applications. In particular, it can be

easily speed-up using parallel computations.
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