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Abstract

Whereas edge-based stereo has traditionally received a lot of attention, rel-
atively few region-based 3D reconstruction techniques have been developed,
despite the significant advantages such global features present for representing
indoor or urban environments. We propose a generic framework for the 3D
reconstruction of planar patches from stereoscopic pairs of images, and explicit
a planar equation recovery scheme, which can be applied to several stereo sys-
tems configurations. Another advantage of the formulation is its possible use
on various cues: we propose two different applications, using moments of iner-
tia, non-parametric photometric analysis. In each case, the robustness of the
results is assessed, using both analytic data consistency check and tests per-
formed on synthetic stereograms. Experiments on real data are also presented.

1 Introduction

Since the introduction of early stereo technics and paradigms [1], steady efforts
were made to robustly recover depth from stereo. A lot of work was dedicated to
the classical goal of robot autonomous navigation, but new applications in scene
analysis, such as virtual environment construction or video-conferencing, require a
relatively high understanding level, in terms of where visible surfaces are located, as
opposed to less structured information such as 1D features (e.g. segments).

In that regard, the planar surfaces assumption, which holds reasonably well in
indoor scenes (as long as humans and plants are not present) has received most of
the attention so far. Aloimonos [2] presented moment-based relationships between
the two projections of a planar region in a calibrated stereoscopic image pair, but
used them in the derivation of invariants instead of explicit 3D reconstruction. The
planar assumption is often used as a constraint for other techniques, such as stereo
contour reconstruction [3] or MRF field-based correlation [4]. Kristensen [5] proposes
to use it in collaboration with corner and line detectors, but relies on a depth from
focus process to obtain robust reconstructions. It is worth noting that most works
rely on the assumption that the stereo geometry is rectified (scanlines correspond
to each other in both images), a condition which may not be readily available on a
given vision system.

We propose a generic framework for the 3D reconstruction of planar patches
from a single stereo pair. The method assumes that region segmentation has been



performed on both images, as well as the matching between 2D primitives, with
methods such as described in [6] and [7]. The key point is that once region corre-
spondences are obtained, no additional stereo information - e.g. local feature
matching - is required.

Our procedure relies on the assumption that there exists an affine transformation
between the left and right coordinates of the perspective projections of a 3D point.
In section 2, we show that such a relationship exists for a rectified stereosystem,
and allows for simple computations in a transformed coordinate system that we call
the disparity space. In the case of a general transform between images (rotation
and translation), we use a paraperspective model to approximate the perspective
projection, and thus derive a locally affine transformation between the coordinates
of the two projections of a 3D point lying on a planar patch. In this case, one
assumes that each 3D surface is shallow with respect to the scene-observer distance.

Section 3 is dedicated to using the equations of section 2 to find the surface
(planar) parameters which gives the best global correspondence between a pair of
matched 2D regions. Here we put the emphasis on avoiding any local feature match-
ing. We propose two different approaches: the first one is solely based on the shape
of the regions and uses centered inertia-moments. The second takes into account
both geometry and photometry by using correlation maps computed on the regions.

As pointed put by many authors, the main problem with region-based stereo
algorithms is that occlusions often bias 3D global shape recovery. More generally,
segmentation is often prone to errors. Yet very few attempts have been made to
detect, take into account or even quantify these effects precisely. In section 4, we
propose several ways of checking the coherency of the stereo data, which enable to
decide whether the reconstruction is valid or not. When using geometrical cues,
affine invariants computed on the matched regions prove to be robust enough to
detect unreliable data (i.e. if the observed 2D geometry is inconsistent with the
hypothesis of the projection of a planar patch). A generalized, intensity-weighted
version of these invariants can be furthermore be applied when dealing with textured

regions. .
2  Problem Formulation

Planar facets

Left camera Right camera g Image Plane 7 = 7,

Fig. 1 - 3D stereo reconstruction Fig. 2 - Paraperspective projection

of planar patches. My is the reference point (see text).
Let us consider the set-up of Fig. 1, where a stereo system (calibrated or not) is
looking at a world made of planar patches. One can establish the equation linking



the two projections m!=(z!,y')! and m"=(z", y")* of a given 3D point M lying on
aplane P : Z'=p! X! + ¢'Y! + ¢! (or Z"=p" X" +¢"Y" + ¢"), as a function of the
plane parameters. It can be easily shown that, without further constraints on the
displacement (rotation R + translation T) between the cameras, the relationship
between the coordinates of m! and m” is nonlinear and as such of little practical
use.

Nevertheless, it can be drastically simplified in the case of a rectified stereo sys-
tem, where T = (T5,0,0)! and R = Id. In that case, y' =y" = y, p"=p'=p,

¢"=¢' = qand:
! z" 4+ (1 — pa" —
(1>:< (1 —pa” —qy) (1)
y Y

In other words, epipolar lines are rasterlines, and the relative displacement of
the matching points along the epipolar lines is a linear function of z, y, p and q.
At this point, it is convenient to map the Cartesian 3D space (X,Y,7) into the
coordinate space (z", z!,y) which we call disparity space, and in which the 3D plane
P :Z" = pX" + qY" + ¢ is transformed into P’ : ex! + fz" + gy + h = 0 (the
mapping is homographic), with:

p=—ej,:f q=—1 ¢=-Top (2)

In the rectified case, it is thus equivalent to recover planar patches equa-
tions in the disparity space or the real 3D space.

In the general case, a local linearization of the pixel correspondence equation can
still be achieved by approximating the true projection by a paraperspective model,

defined by (see Fig. 2):
(2)%%@)—22320 () ®)

where My = (Xo, Yy, Zp)! is a reference point. This model relies on the hypothesis
that the projective projection % can be well approximated by the first term of its
Taylor series around Zj: in other words, the dimensions of an observed object are
much smaller than its depth Z. This is sometimes refered as the shallow object
hypothesis, which holds well for indoor scenes or satellite imagery.

Under these two conditions, the approximation holds, and one can derive the
following approximation:
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Again, we obtain an affine equation, with a linear dependence in the plane coef-
ficients £ and . For the choice of My see next section.

Starting from equations (1) and (4), we will now derive global relationships be-
tween the two projections of a 3D planar patch in the images of a stereo pair, and
use them to recover the position parameters (p, g, ¢).



3 3D Plane Computation

It is assumed here that two images of a stereo pair have been segmented into re-
gions. A lot of segmentation methods exist, and we are currently using different
algorithms developed by our team, based on region growing [8], region splitting [7]
or energy minimization [6]. Segmented regions are subsequently matched, using
epipolar constraints and image intensity based characteristics [9, 7]. The advantage
of this approach comes from the fact that it is relatively easy to reliably extract and
globally match extended 2D features, if the planar surfaces approximation holds,
whereas obtaining exact pixel-to-pixel matching is much trickier. Therefore we will
not try to use matching equations (1) or (4) at a local level, but to integrate over the
whole regions. In this section, we propose three different techniques, directly derived
from the planar-constrained correspondence equations, which rely on geometric and
photometric cues, along with additional assumptions about the content of the scene.
Results are shown in section 5.

3.1 Geometry-Based Reconstruction

Given a region R (a set of Nr connected pixels in an image), (%,7) two inte-
gers of IN, such as ¢ + 7 = n, the inertia moment L;; of order n is defined as
Lij = Y m(eyer®y - In particular Log = Ng, and the center of inertia of R is
tin = (%, yu)' = §o(Lio; Lor)'. We will use a more intrinsic representation, the
centered moments: Cj; = 32, e p(® — L10)*(y — Lot )’. In this section we use
only moments of order 2 or lower.

¢ Rectified geometry:

Let us also define the cross-moment between the two matching regions R’ and R" as:
Tt = Dom(atyrye (' — ), )(¢" — 2}). Starting from the disparity plane equation
ex! + fz" + gy + h = 0, and using the definition of C;; and o0,, one easily derives
the following set:

eCl, + fOT, + gCo2 =0 eChy+ fori +9Cl, =0 eor + fC5 +9Ci; =0 (5)

Eliminating o,; (we don’t compute any pixel matching), one gets:

e _, [+ C5Co g= _cChtrch ©)
! Cly" + ChCon oz
The normal vector (e, f, g)* being normalized, there are therefore two solutions,
but a negative ? ratio will be rejected as it corresponds to the case where the two
cameras look at different sides of the 3D plane (which is unlikely for real scenes).
¢ General case:
If one cannot work in a simplified geometry, a local linearization is performed through
equation (4). M is triangulated from matching points u™ and y', thus assuming
they are the projections of the real center of gravity of the 3D region (which is a
reasonable first estimate if the two cameras are not too far apart). We will denote
by Fpare the linear part of the left-to-right correspondence equations. It depends on
P and %, denoted P and @ respectively.

zr zr
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This time, the inertia matrix correspondence equation is:
¢ = (mt — ph)(mt — ph)* = FparaC  Flora (8)



Matrices C are positive definite, and can be decomposed as C = (U)T¥T¥U,
where U is a rotation and ¥ a diagonal matrix (this is obtained by standard eigen-
value decomposition). Replacing C! and C™ in (8), one finally deduces that matrix
K, defined as K = (\Ill)_lUleamUrT\IlT is necessarily a rotation, and as such ver-
ifies K11 = Kg2 and Kia = —Kai. The elements K;; are analytically obtained as
first order polynomials in P" and @7, so that these last two equalities form a system
which solution is the best planar fit.

3.2 Correlation-Based Reconstruction
In this section, we assume that the surface considered is stereo-lambertian, meaning

that the intensity of the projection of a 3D point in both images of the stereo
system is practically the same. Provided that the region gray levels are not uniform,
a correlation-based method can now be applied. As opposed to standard correlation
approaches, the proposed algorithm does not operate locally but globally using all
the region photometry.

Let us define the autocorrelation function of the bounded region as [10]
T(5) = Z(z’y)eRI(m + 8¢,y + 5y)I(z,y). The mapping between matching points
in the right and left images is affine (equation (1) with a rectified geometry and
equation (4) with a paraperspective projection). Hence sl = Fpuras®, where Fq,, is
a function of the facet specification (p, g, ¢) (equation (7)). Consequently, we deduce
that the dependency between the left and right autocorrelation is linear:

Th(sl) =D 1Mt +sh) =Y 1@ (@ + Fparas!) = T (Fparas?) )
1 r

Autocorrelatiog images are numerigally computed with a Fast Fourier Transform
before normalization. As previously, centers of gravity provide the ¢ patch position
(see 3.1). The (p, g) orientation of the face is given by fitting the left autocorrelation
map on the right one, by minimizing the least-square criterion:

- 512
(p, 4, )=y _[17 (M)~ T'(s")] (10)
slet

The minimization problem is achieved using Powell’s iterative algorithm. The
initial estimate is given by a coarse 3D reconstruction method (or the geometric
method exposed above) to ensure a fast and reliable convergence.
4 Checking data consistency
For each oh the two proposed methods of planar patch reconstruction, it is possible
to test the relevance of its application on a given region pair.
4.1 Geometric Moments Invariants
In section 2, we produced affine mapping formulas between matching points in the
right and left images. It follows that affine moment-based invariants exist between

corresponding regions of a stereo pair [11]. We will limit ourselves to the three
fundamental invariants of order no higher than 3, namely:

Ii = (C20Co2—CH)/Chy (11)
I» = (C3,Cf; — 6C30C21C03 + 4C30C3, + 4C21°Coz — 3C%,C1,) /Ci (12)
Is = (C20(C21C03 — C%) — C11(C30C03 — C21C12) + Co2(C30C12 — C%1)) /0%, (13)

Consequently, before starting the reconstruction process, the computation of in-
variants allows to test the validity of our hypothesis, i.e. if the shape of a given
match of regions is consistent with the planar patch projection hypothesis. Any vio-
lation of the hypothesis (due to segmentation errors, occlusions, or other unidentified
causes) can produce a variation between the estimates of I, I and I3 computed on
the images, and be used as a discrimination tool. To determine the efficiency of this
consistency check, it is necessary to investigate the stability of moment-based invari-
ants versus noise or viewpoint changes. For example, it is clear that the higher the



order, the more sensitive the invariant is. A systematic study using known synthetic
data is presented in section 5.3.
4.2 Checking Correlation Information
We can also take into account both geometric and photometric informations at the
same time, using the generalized centered moments, which are simply the inertia
moments weighted by the intensity I(z,y) of each pixel m(z, y):

Chi= Y. I@y(e- L)y -Lo) (14)

m(z,y)ER

As in section 4.1, invariants are built out of the generalized moments and can be
used in a similar way.

5 Experimental results

5.1 Synthetic scenes
The proposed reconstruction methods are first tested with synthetic data, where

both geometry and photometry are fully known. Synthetic scenes also allow to
isolate errors produced by the reconstruction process, without interferences induced
by the previous analysis processes (calibration, segmentation and matching).

5.1.1 Paraperspective and rectified geometry

First, we verify that the paraperspective model (equation (4)) gives accurate results

despite approximations. For example, for the synthetic object of Fig. 3-a. the system
vergence is 10°, and the geometric reconstruction obtained in the paraperspective
case is shown in Fig. 3-c.

The orientations of the facets relatively to one another are shown in Table 1,
where they are compared to the real angles and to the values obtained with the
rectified geometry as well.

This experiment, along with others not presented here, show that the method is
more accurate in the rectified case, but the two algorithms tend to produce similar
estimates if the vergence angle becomes small.

3

Fig. 3 : a - A synthetic object. b - Facets numbering ¢ - Top view of the reconstructed
used in table below. object using the geometry
based method.

Facets pair real parapersp. | rectified
0-1 135.0° 132.6° 135.45°
0-2 90.0° 89.18° 89.61°
1-2 90.0° 85.55° 91.24°
1-3 90.0° 83.22° 87.79°
1-4 90.0° 85.09° 88.98°
2-3 90.0° 88.60° 94.33°
2-4 0.0° 2.96° 2.45°
34 90.0° 91.44° 95.20°

Table 1 - Real normal angle of pair of facets, and estimations with geometry based reconstruction
in paraperspective and rectified geometry.



5.1.2 Correlation-Based reconstruction
By definition, the correlation-based method assumes the presence of a texture (for
example, see Fig. 4 below). But as the geometry is also taken into account implicitely
in the actual correlation computation, this method turns out to be the most accurate
(but also the most computationally intensive).

Plane Equation (p,q,c) Error Angle
Real (-0.004,-0.171,18.29)

Geometric (-0.014,-0.198,18.34) 1.6°
Correlation | (-0.023,-0.188,18.4) 1.45°

Fig. 4 - Stereo pair of a banknote and the recovered planar equations and errors.

5.2 Real Scene
Figure 5 shows the original image of a soccer ball and the results obtained with

the geometry based reconstruction algorithm. Please note that the method is not
disturbed by the fact the patches (hexagons and pentagons) are only approximately

A

Fig. 5 - Soccer ball and planar patch based 3D reconstruction.
The experiments described above, along with others not presented here show
that the general framework presented here is suited for planar patch reconstruction,
and that furthermore the two proposed methods can deal with a large spectrum of

experimental conditions.

5.3 Stability of the methods
We have chosen to test the robustness of our algorithms on known synthetic data,

consisting of a succession of 8 stereo images of two planar patches, with increasing

amounts of occlusion (Fig. 6 shows four images of the obtained image sequence).
5.3.1 Robustness to occlusion
The plot below shows the error of orientation of the occluded facet as a function of

occlusion (we have plotted the corresponding occlusion-free experiment for compar-
ison).

Fig. 6 - Four images of the occlusion test sequence, and the reconstruction stability results.

reconstruction stability
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Experimentally, the bias produced by occlusions on the 3D patch orientation and
pose is reasonable (about 12° for the data of Fig. 6), and about the same magnitude
as noise and segmentation errors.



5.3.2 Invariance Checking

We use the same scene as previously to test the robustness of invariants defined in

section 4.1. First, we remove the occluding plane and plot the 3 invariants in the

different views of the sequence. Invariants of the first image are taken as references.
invariant stability
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Fig.7 - Ratio of the left and right invariants I1, Iz and I3 computed on the successive viewpoints
without occluding plane (a) and with occluding plane (b).

It is well known that moments become more susceptible to noise as their order
increases: I and I3 clearly show insufficient stability to viewpoint changes (see
Fig. 7-a). We therefore select I; as the more robust invariant. Fig. 7-b confirms
this conclusion: Iy and I3 are very sensitive to big occlusion errors, whereas Iy
degrades nicely.

In this example, region couples with an invariant ratio out of the interval
[0.96,1.04] corresponds to couples with more than 10% of their area occluded. Other
experiments corroborate this result, and regions couples displaying more than 5 %
invariant disparity should be considered unreliable. Weighted invariant ] holds well
on textured surfaces: if one considers the two images of the banknote (Fig. 4), the
relative error in the estimation in I (using textural information) is 1.9 %, compared
to 0.7 % if one considers I; (geometry only).

6 Conclusion

We proposed a generic framework for the 3D reconstruction of planar surfaces from
their image projections on a stereo couple. The approach does not rely on any local
feature matching and can make use of both geometric and photometric cues. It is
relatively robust to segmentation errors or occlusions.

The work presented here currently relies on a region segmentation and matching
process. Future extensions include the development of a segmentation-less stereo
reconstruction scheme making use of similar equations as geometric and photometric
constraints.
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