Markov Random Field for combined defogging and stereo reconstruction

MS45 Mathematical techniques for bad visibility restoration SIAM Conference on Imaging Science, June 5-8, 2018

Jean-Philippe Tarel and Laurent Caraffa

Université Paris Est, IFSTTAR, IGN

June 7th, 2018

(日) (四) (문) (문) (문)

Clear, Visibility distance : 17km

< □ > < 同 > .

Color Fades

Visibility distance : 5km

(日)、

э

- Color Fades
- Airlight added

Visibility distance : 1km

(日)、

э

- Color Fades
- Airlight added
- Contrast and visibility decrease with distance

Visibility distance : 500m

- Color Fades
- Airlight added
- Contrast and visibility decrease with distance

Visibility distance : 250m

 \Rightarrow Difficulties for object detection/recognition/identification

The Koschmieder law [Middleton52] :

$$I = I_0 e^{-\beta d} + I_s (1 - e^{-\beta d})$$

The Koschmieder law [Middleton52] :

$$I = I_0 e^{-\beta d} + I_s (1 - e^{-\beta d})$$

(日)、

э.

Foggy image /

The Koschmieder law [Middleton52] :

$$I = I_0 e^{-\beta d} + I_s (1 - e^{-\beta d})$$

Foggy image I

Image without fog I_0

(日)、

ъ

The Koschmieder law [Middleton52] :

$$I = I_0 e^{-\beta d} + I_s (1 - e^{-\beta d})$$

Foggy image *I*

Image without fog I_0

Depth map d

ъ

(日) (同) (日) (日)

The Koschmieder law [Middleton52] :

$$I = I_0 e^{-\beta d} + I_s (1 - e^{-\beta d})$$

Foggy image *I*

Image without fog I_0

Depth map d

ъ

(日)、

• Is the sky intensity

The Koschmieder law [Middleton52] :

$$I = I_0 e^{-\beta d} + I_s (1 - e^{-\beta d})$$

Foggy image *I*

Image without fog I_0

Depth map d

- *l_s* is the sky intensity
- β is the extinction coefficient (related to the visibility distance)

The Koschmieder law [Middleton52] :

$$I = I_0 e^{-\beta d} + I_s (1 - e^{-\beta d})$$

Foggy image *I*

Image without fog I_0

Depth map d

- Is the sky intensity
- β is the extinction coefficient (related to the visibility distance)
- \Rightarrow For single image defogging, ambiguity between l_0 and βd

The Koschmieder law [Middleton52] :

$$I = I_0 e^{-\beta d} + I_s (1 - e^{-\beta d})$$

Foggy image *I*

Image without fog I_0

Depth map d

- *l_s* is the sky intensity
- β is the extinction coefficient (related to the visibility distance)
- \Rightarrow For single image defogging, ambiguity between I_0 and $eta \mathit{d}$
- \Rightarrow When D known, I_0 is computed from estimates of β and I_s

Foggy image

Visibility restoration using CNN AOT-Net [Li-ICCV17]

(日)

Many variants

Foggy image

Visibility restoration using [Tarel-ICCV09]

- Many variants
- Atmospheric veil $I_s(1-e^{-eta d})$ estimated from the pixels white amount

Foggy image

Visibility restoration using Dark Chanel Prior [He-CVPR09]

・ロト ・四ト ・ヨト ・ヨト ・ヨ

- Many variants
- Atmospheric veil $I_s(1-e^{-eta d})$ estimated from the pixels white amount
- Filtering and guided filtering [He-PAMI13,Caraffa-IP15]

Foggy image

Visibility restoration using [Caraffa-IP15]

- Many variants
- Atmospheric veil $I_s(1 e^{-\beta d})$ estimated from the pixels white amount
- Filtering and guided filtering [He-PAMI13,Caraffa-IP15]
- Reverse Koschmieder law from the atmospheric veil

Left stereo image

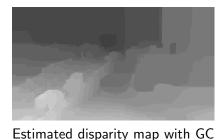
Right stereo image

A B > A B >

Estimated disparity map using SGM [Hirschmuller-PAMI08]

Right stereo image

(日)、



Right stereo image

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

[Boykov-PAMI01]
Problem : a wall is reconstructed before visibility distance due to decreasing contrast with distance

Single Image defogging

Right stereo image

・ロト ・四ト ・ヨト ・ヨト ・ヨ

- Problem : a wall is reconstructed before visibility distance due to decreasing contrast with distance
- However, available information at far distances not used

Stereo reconstruction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Virgin of the Rocks (Da Vinci, 1507)

Stereo reconstruction

• The intensity is related to the depth at far distances

Landscape of Virgin of the Rocks (Da Vinci, 1507) Stereo reconstruction

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

• The intensity is related to the depth at far distances

Atmospheric veil after thresolding

Stereo reconstruction

- The intensity is related to the depth at far distances
- Complementary depth cues are provided by fog and stereovision

Atmospheric veil after thresolding

Stereo reconstruction

- The intensity is related to the depth at far distances
- Complementary depth cues are provided by fog and stereovision
- \Rightarrow Usefull combination

Towards a MRF model

• Stereovision without fog

Towards a MRF model

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Stereovision without fog
- Single image defogging knowing the depth

Towards a MRF model

- Stereovision without fog
- Single image defogging knowing the depth
- Global model combining defogging and stereovision

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

・ロト ・ 日 ト ・ モ ト ・ モ ト

æ

 I_L

 I_R

Bayesian approach :

 $p(D, I_{0L}|I_L, I_R) \propto p(I_L, I_R|D, I_{0L}) p(D, I_{0L})$

イロト イポト イヨト イヨト

э

Bayesian approach :

 $p(D, I_{0L}|I_L, I_R) \propto p(I_L, I_R|D, I_{0L}) p(D, I_{0L})$

$$E(D, I_{0L}|I_L, I_R) = \underbrace{E(I_L, I_R|D, I_{0L})}_{E_{data}} + \underbrace{E(D, I_{0L})}_{E_{prior}}$$
(1)

イロト イポト イヨト イヨト

э

Bayesian approach :

 $p(D, I_{0L}|I_L, I_R) \propto p(I_L, I_R|D, I_{0L}) p(D, I_{0L})$

$$E(D, I_{0L}|I_L, I_R) = \underbrace{E(I_L, I_R|D, I_{0L})}_{E_{data}} + \underbrace{E(D, I_{0L})}_{E_{prior}}$$
(1)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

MAP estimate \Rightarrow Find D and I_{0L} which minimize E.

Dense stereo reconstruction without fog

Without fog, $\textit{I}_{0\textit{L}} \approx \textit{I}_{\textit{L}}$:

Dense stereo reconstruction without fog

Without fog, $\textit{I}_{0\textit{L}}\approx\textit{I}_{\textit{L}}$:

$$E(D|I_L, I_R) = \underbrace{E(I_R, I_L|D)}_{E_{data_stereo}} + \underbrace{E(D)}_{E_{prior_stereo}}$$

(2)

Dense stereo reconstruction without fog

Without fog, $I_{0L} \approx I_L$:

$$E(D|I_L, I_R) = \underbrace{E(I_R, I_L|D)}_{E_{data_stereo}} + \underbrace{E(D)}_{E_{prior_stereo}}$$
(2)
$$E_{data_stereo} = \sum_{(i,j)\in X} \rho_S(\frac{|I_L(i,j) - I_R(i - D(i,j),j)|}{\sigma_S})$$

Dense stereo reconstruction without fog

Without fog, $I_{0L} \approx I_L$:

$$E(D|I_L, I_R) = \underbrace{E(I_R, I_L|D)}_{E_{data_stereo}} + \underbrace{E(D)}_{E_{prior_stereo}}$$
(2)

$$E_{data_stereo} = \sum_{(i,j)\in X} \rho_S(\frac{|I_L(i,j) - I_R(i - D(i,j),j)|}{\sigma_S})$$

$$E_{prior_stereo} = \lambda_D \sum_{(i,j)\in X} \sum_{(k,l)\in N} |D(i,j) - D(i+k,j+l)|$$

When depth $d = \frac{\nu}{D}$ is known :

$$E(I_0|D,I) = \underbrace{E(I|D,I_0)}_{E_{data_fog}} + \underbrace{E(I_0|D)}_{E_{prior_fog}}$$
(3)

When depth $d = \frac{\nu}{D}$ is known :

$$E(I_0|D, I) = \underbrace{E(I|D, I_0)}_{E_{data-fog}} + \underbrace{E(I_0|D)}_{E_{prior_fog}}$$
(3)
$$E_{data_fog} = \sum_{(i,j)\in X} \rho_P(\frac{|I_0(i,j)e^{-\frac{\beta\nu}{D(i,j)}} + I_s(1 - e^{-\frac{\beta\nu}{D(i,j)}}) - I(i,j)|}{\sigma_P})$$

• ρ_p is related to the assumed noise distribution

When depth $d = \frac{\nu}{D}$ is known :

$$E(I_{0}|D, I) = \underbrace{E(I|D, I_{0})}_{E_{data_{-}fog}} + \underbrace{E(I_{0}|D)}_{E_{prior_{-}fog}}$$
(3)
$$E_{data_{-}fog} = \sum_{(i,j)\in X} \rho_{P}(\frac{|I_{0}(i,j)e^{-\frac{\beta\nu}{D(i,j)}} + I_{s}(1 - e^{-\frac{\beta\nu}{D(i,j)}}) - I(i,j)|}{\sigma_{P}})$$

$$E_{prior_{-}fog} = \lambda_{I_{0}} \sum_{(i,j)\in X} \sum_{(k,l)\in N} |I_{0}(i,j) - I_{0}(i+k,j+l)|$$

• ρ_p is related to the assumed noise distribution

When depth $d = \frac{\nu}{D}$ is known :

$$E(I_{0}|D, I) = \underbrace{E(I|D, I_{0})}_{E_{data.fog}} + \underbrace{E(I_{0}|D)}_{E_{prior.fog}}$$
(3)

$$E_{data_{-}fog} = \sum_{(i,j)\in X} \rho_{P}(\frac{|I_{0}(i,j)e^{-\frac{\beta\nu}{D(i,j)}} + I_{s}(1 - e^{-\frac{\beta\nu}{D(i,j)}}) - I(i,j)|}{\sigma_{P}})$$

$$E_{prior_{-}fog} = \lambda_{I_{0}} \sum_{(i,j)\in X} \sum_{(k,l)\in N} e^{-\frac{\beta\nu}{D(i,j)}} |I_{0}(i,j) - I_{0}(i+k,j+l)|$$

- ρ_p is related to the assumed noise distribution
- Factor $e^{-\frac{\beta\nu}{D(i,j)}}$ into the prior term

$$E_{prior_fog} = \lambda_{I_0} \sum_{(i,j) \in X} \sum_{(k,l) \in N}$$

$$|I_0(i,j) - I_0(i+k,j+l))|$$

$$E_{prior_fog} = \lambda_{I_0} \sum_{(i,j) \in X} \sum_{(k,l) \in N}$$

$$|I_0(i,j) - I_0(i+k,j+l))|$$

$$E_{prior_fog} = \lambda_{I_0} \sum_{(i,j) \in X} \sum_{(k,l) \in N} \frac{e^{-\frac{\beta\nu}{D(i,j)}}}{|I_0(i,j) - I_0(i+k,j+l))|}$$

$$E_{prior_fog} = \lambda_{I_0} \sum_{(i,j) \in X} \sum_{(k,l) \in N} \frac{e^{-\frac{\beta\nu}{D(i,j)}}}{|I_0(i,j) - I_0(i+k,j+l))|}$$

$$E_{prior_fog} = \lambda_{I_0} \sum_{(i,j) \in X} \sum_{(k,l) \in N} \frac{e^{-\frac{\beta\nu}{D(i,j)}}}{|I_0(i,j) - I_0(i+k,j+l))|}$$

$$E_{prior_fog} = \lambda_{I_0} \sum_{(i,j) \in X} \sum_{(k,l) \in N} \frac{e^{-\frac{\beta\nu}{D(i,j)}}}{|I_0(i,j) - I_0(i+k,j+l))|}$$

Stereo reconstruction and defogging : Data term

$$E_{data_fog_stereo} = \sum_{(i,j)\in X} \rho_P(\frac{|I_{0L}(i,j)e^{\frac{-\beta\nu}{D(i,j)}} + I_s(1 - e^{\frac{-\beta\nu}{D(i,j)}}) - I_L(i,j)|}{\sigma_P}) + \rho_P(\frac{|I_{0L}(i,j)e^{\frac{-\beta\nu}{D(i,j)}} + I_s(1 - e^{\frac{-\beta\nu}{D(i,j)}}) - I_R(i - D(i,j),j)|}{\sigma_P})$$
(4)

Stereo reconstruction and defogging : Data term

$$E_{data_fog_stereo} = \sum_{(i,j)\in X} \rho_P(\frac{|I_{0L}(i,j)e^{\frac{-\beta\nu}{D(i,j)}} + I_s(1 - e^{\frac{-\beta\nu}{D(i,j)}}) - I_L(i,j)|}{\sigma_P}) + \rho_P(\frac{|I_{0L}(i,j)e^{\frac{-\beta\nu}{D(i,j)}} + I_s(1 - e^{\frac{-\beta\nu}{D(i,j)}}) - I_R(i - D(i,j),j)|}{\sigma_P})$$
(4)

$$E_{data^*} = \alpha E_{data_stereo} + (1 - \alpha) E_{data_fog_stereo}$$

Stereo reconstruction and defogging : Data term

$$E_{data_fog_stereo} = \sum_{(i,j)\in\mathcal{X}} \rho_P(\frac{|I_{0L}(i,j)e^{\frac{-\beta\nu}{D(i,j)}} + I_s(1 - e^{\frac{-\beta\nu}{D(i,j)}}) - I_L(i,j)|}{\sigma_P}) + \rho_P(\frac{|I_{0L}(i,j)e^{\frac{-\beta\nu}{D(i,j)}} + I_s(1 - e^{\frac{-\beta\nu}{D(i,j)}}) - I_R(i - D(i,j),j)|}{\sigma_P})$$

$$(4)$$

$$E_{data^*} = \alpha E_{data_stereo} + (1 - \alpha) E_{data_fog_stereo}$$

$$E_{data^*} = \alpha E_{data_stereo} + (1 - \alpha) E_{data_fog_stereo}$$

$$E_{data} = \begin{cases} E_{data^*} & \text{if } I_L(i,j) \neq I_s \\ 0 & \text{else. } I_L(i,j) = I_s \text{ and } D(i,j) = 0 \end{cases}$$

$$\underset{D,I_{0L},\sigma_{p}}{\operatorname{argmin}} E = \alpha E_{data_stereo}(D) + (1 - \alpha) E_{data_fog_stereo}(I_{0L},D,\sigma_{p})$$

$$+ \lambda_{D} E_{prior_stereo}(D) + (1 - \alpha) \lambda_{I_{0L}} E_{prior_fog}(I_{0L},D)$$

$$(5)$$

$$\begin{aligned} \underset{D,I_{0L},\sigma_{p}}{\operatorname{argmin}} E &= \alpha E_{data_stereo}(D) + (1-\alpha) E_{data_fog_stereo}(I_{0L},D,\sigma_{p}) \\ &+ \lambda_{D} E_{prior_stereo}(D) + (1-\alpha) \lambda_{I_{0L}} E_{prior_fog}(I_{0L},D) \end{aligned}$$

$$(5)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• lpha and λ_D are hyper-parameters, $\lambda_{I_{0L}}=1$

$$\underset{D,I_{0L},\sigma_{p}}{\operatorname{argmin}} E = \alpha E_{data_stereo}(D) + (1 - \alpha) E_{data_fog_stereo}(I_{0L},D,\sigma_{p})$$

$$+ \lambda_{D} E_{prior_stereo}(D) + (1 - \alpha) \lambda_{I_{0L}} E_{prior_fog}(I_{0L} | \overset{\mathcal{O}}{D})$$

$$(5)$$

- α and λ_D are hyper-parameters, $\lambda_{\textit{I}_{\textit{0L}}} = 1$
- D Approximated by an initial \ddot{D} to simplify optimization

$$\underset{D,I_{0L},\sigma_{p}}{\operatorname{argmin}} E = \alpha E_{data_stereo}(D) + (1 - \alpha) E_{data_fog_stereo}(I_{0L},D,\sigma_{p})$$

$$+ \lambda_{D} E_{prior_stereo}(D) + (1 - \alpha) \lambda_{I_{0L}} E_{prior_fog}(I_{0L}|\ddot{D})$$

$$(5)$$

- α and λ_D are hyper-parameters, $\lambda_{\textit{I}_{0L}}=1$
- D Approximated by an initial \ddot{D} to simplify optimization
- Alternate optimization with respect to D

$$\begin{aligned} \underset{D,l_{0L},\sigma_{p}}{\operatorname{argmin}} E = & \alpha E_{data_stereo}(D) + (1-\alpha) E_{data_fog_stereo}(l_{0L},D,\sigma_{p}) \\ & + \lambda_{D} E_{prior_stereo}(D) + (1-\alpha) \lambda_{l_{0L}} E_{prior_fog}(l_{0L} | \ddot{D}) \end{aligned}$$

$$(5)$$

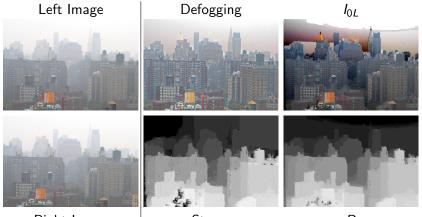
- α and λ_D are hyper-parameters, $\lambda_{\textit{I}_{0L}}=1$
- D Approximated by an initial \ddot{D} to simplify optimization
- Alternate optimization with respect to D and I_{0L}

$$\begin{aligned} \underset{D,l_{0L},\sigma_{p}}{\operatorname{argmin}} E = & \alpha E_{data_stereo}(D) + (1-\alpha) E_{data_fog_stereo}(l_{0L},D,\sigma_{p}) \\ & + \lambda_{D} E_{prior_stereo}(D) + (1-\alpha) \lambda_{l_{0L}} E_{prior_fog}(l_{0L}|\ddot{D}) \end{aligned}$$

$$(5)$$

- lpha and λ_D are hyper-parameters, $\lambda_{\textit{I}_{\textit{OL}}} = 1$
- D Approximated by an initial D to simplify optimization
- Alternate optimization with respect to D and I_{0L}
- Estimate σ_p like in [Nishino-IJCV12]

Results on real images



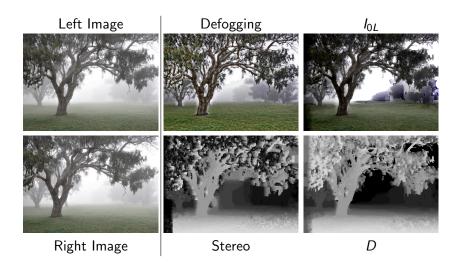
Right Image

Stereo

э

・ロト ・聞ト ・ヨト ・ヨト

Results on real images



<ロト <回ト < 注ト < 注ト

Conclusion

 Thanks to complementary depth cues between stereovision and fog, defogging and stereo reconstruction can be combined with advantages

Conclusion

 Thanks to complementary depth cues between stereovision and fog, defogging and stereo reconstruction can be combined with advantages

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• More details in [Caraffa-CVA14, Caraffa-ACCV12]

Thank you